
Introduction to the Unix Curses Library

Norman Matloff
Department of Computer Science
University of California at Davis

c©1997-2011, N. Matloff

April 8, 2011

Contents

1 History 2

1.1 Purpose of the Curses Library . 2

1.2 Evolution of the Role of Curses . 2

2 Include and Library Files 3

3 Two Examples 3

3.1 Simple, Quick Introductory Example . 3

3.2 A Second, More Useful Example . 4

3.3 A Note on “Cooked” and “Raw” Modes in the Examples 7

4 Important Debugging Notes 7

4.1 GDB . 8

4.2 DDD . 8

5 Some of the Major Curses APIs, Attributes and Environment Variables 8

5.1 Environment . 8

5.2 APIs . 8

5.3 Attributes . 10

6 To Learn More 10

1

1 History

1.1 Purpose of the Curses Library

Many widely-used programs need to make use of a terminal’s cursor-movement capabilities. A familiar
example is the vi (or the vim variation) text editor; most of its commands make use of such capabilities.
For example, hitting the j key while in vi will make the cursor move up one line. Typing dd will result in
the current line being erased, the lines below it moving up one line each, and the lines above it remaining
unchanged.

A potential problem with all this is that different terminals have different ways in which to specify a given
type of cursor motion. For example, if a program wants to make the cursor move up one line on a VT100
terminal, the program needs to send the characters Escape, [, and A:

printf("%c%c%c",27,’[’,’A’);

(the ASCII character code for the Escape key is 27). But for a Televideo 920C terminal, the program would
have to send the ctrl-K character, which has code 11:

printf("%c",11);

Clearly, the authors of programs like vi would go crazy trying to write different versions for every terminal,
and worse yet, anyone else writing a program which needed cursor movement would have to “re-invent the
wheel,” i.e. do the same work that the vi-writers did, a big waste of time.

That is why the curses library was developed. The goal was to alleviate authors of cursor-oriented pro-
grams like vi of the need to write different code for different terminals. The programs would make calls to
the library, and the library would sort out what to do for the given terminal type.

For example, if your program needs to clear the screen, it would not (directly) use any character sequences
like those above. Instead, it would simply make the call

clear();

and curses would do the work on the program’s behalf, i.e. would print the characters Escape, [, and A,
causing the screen to clear.

1.2 Evolution of the Role of Curses

Development of the curses library was a major step in the evolution of Unix software. Even though
the VT100 terminal type eventually became standard, curses continued to play an important role, by
providing an extra level of abstraction to the programmer, alleviating the programmer from needing to know
even the VT100 cursor movement codes.

The library is still quite important in today’s GUI-oriented world, because in many cases it is more conve-
nient to use the keyboard for actions than the mouse.1 Today physical terminals are rarely used, but typical

1After all, even many Microsoft Windows applications provide “keyboard shortcuts.”

2

Unix work does involve some text windows each of which is emulating a VT100 terminal.2 The vi editor
and other curses-based programs continue to be popular.3

2 Include and Library Files

In order to use curses, you must include in your source code a statement

#include <curses.h>

and you must link in the curses library:

gcc -g sourcefile.c -lcurses

3 Two Examples

It’s best to learn by example!

Try running these programs! You don’t have to key in their source code; instead, you can get it from the raw
file which produced this document, http://heather.cs.ucdavis.edu/˜matloff/UnixAndC/
CLanguage/Curses.tex, and then editing out the non-code.

If you are in a hurry, you may wish to go directly to the second example, which anyway is better commented
and makes use of more curses features.

3.1 Simple, Quick Introductory Example

Our first example does very little. You can think of it as a very primitive, uninteresting game. But it gives
us a start.

The comments at the top of the source file tell you what the “game” does. Compile and run the program,
inputting various characters as you like. Then read the code (start with main(), as you should in general),

2The program running the window is xterm or something similar, e.g. gnome-terminal.
3Interestingly, even some of those classical Curses programs have also become somewhat GUI-ish. For instance vim, the most

popular version of vi (it’s the version which comes with most Linux distributions, for example), can be run in gvim mode. There,
in addition to having the standard keyboard-based operations, one can also use the mouse. One can move the cursor to another
location by clicking the mouse at that point; one can use the mouse to select blocks of text for deletion or movement; etc. There are
icons at the top of the editing window, for operations like Find, Make, etc.

3

http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Curses.tex
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Curses.tex

with the comments doing the explaining.

1 // simple curses example; keeps drawing the inputted characters, in columns
2 // downward, shifting rightward when the last row is reached, and
3 // wrapping around when the rightmost column is reached
4

5 #include <curses.h> // required
6

7 int r,c, // current row and column (upper-left is (0,0))
8 nrows, // number of rows in window
9 ncols; // number of columns in window

10

11 void draw(char dc)
12

13 { move(r,c); // curses call to move cursor to row r, column c
14 delch(); insch(dc); // curses calls to replace character under cursor by dc
15 refresh(); // curses call to update screen
16 r++; // go to next row
17 // check for need to shift right or wrap around
18 if (r == nrows) {
19 r = 0;
20 c++;
21 if (c == ncols) c = 0;
22 }
23 }
24

25 main()
26

27 { int i; char d;
28 WINDOW *wnd;
29

30 wnd = initscr(); // curses call to initialize window
31 cbreak(); // curses call to set no waiting for Enter key
32 noecho(); // curses call to set no echoing
33 getmaxyx(wnd,nrows,ncols); // curses call to find size of window
34 clear(); // curses call to clear screen, send cursor to position (0,0)
35 refresh(); // curses call to implement all changes since last refresh
36

37 r = 0; c = 0;
38 while (1) {
39 d = getch(); // curses call to input from keyboard
40 if (d == ’q’) break; // quit?
41 draw(d); // draw the character
42 }
43

44 endwin(); // curses call to restore the original window and leave
45

46 }
47

3.2 A Second, More Useful Example

Here’s a program you can actually use. If you need to kill a number of processes, this program will allow
you to browse through your processes, killing the ones you want.

Again, compile and run the program, and kill some garbage processes which you’ve set up for that purpose.
(For that matter, you could kill psax itself.) Then read the code, with the comments doing the explaining.

1 // psax.c; illustration of curses library
2

3 // runs the shell command ’ps ax’ and dislays the last lines of its output,
4 // as many as the window will fit; allows the user to move up and down
5 // within the window, with the option to kill whichever process is
6 // currently highlighted
7

4

8 // usage: psax
9

10 // user commands:
11

12 // ’u’: move highlight up a line
13 // ’d’: move highlight down a line
14 // ’k’: kill process in currently highlighted line
15 // ’r’: re-run ’ps ax’ for update
16 // ’q’: quit
17

18 // possible extensions: allowing scrolling, so that the user could go
19 // through all the ’ps ax’ output, not just the last lines; allow
20 // wraparound for long lines; ask user to confirm before killing a
21 // process
22

23 #define MAXROW 1000
24 #define MAXCOL 500
25

26 #include <curses.h> // required
27

28 WINDOW *scrn; // will point to curses window object
29

30 char cmdoutlines[MAXROW][MAXCOL]; // output of ’ps ax’ (better to use
31 // malloc())
32 int ncmdlines, // number of rows in cmdoutlines
33 nwinlines, // number of rows our "ps ax" output occupies in the
34 // xterm (or equiv.) window
35 winrow, // current row position in screen
36 cmdstartrow, // index of first row in cmdoutlines to be displayed
37 cmdlastrow; // index of last row in cmdoutlines to be displayed
38

39 // rewrites the line at winrow in bold font
40 highlight()
41 { int clinenum;
42 attron(A_BOLD); // this curses library call says that whatever we
43 // write from now on (until we say otherwise)
44 // will be in bold font
45 // we’ll need to rewrite the cmdoutlines line currently displayed
46 // at line winrow in the screen, so as to get the bold font
47 clinenum = cmdstartrow + winrow;
48 mvaddstr(winrow,0,cmdoutlines[clinenum]);
49 attroff(A_BOLD); // OK, leave bold mode
50 refresh(); // make the change appear on the screen
51 }
52

53 // runs "ps ax" and stores the output in cmdoutlines
54 runpsax()
55 { FILE *p; char ln[MAXCOL]; int row,tmp;
56 p = popen("ps ax","r"); // open Unix pipe (enables one program to read
57 // output of another as if it were a file)
58 for (row = 0; row < MAXROW; row++) {
59 tmp = fgets(ln,MAXCOL,p); // read one line from the pipe
60 if (tmp == NULL) break; // if end of pipe, break
61 // don’t want stored line to exceed width of screen, which the
62 // curses library provides to us in the variable COLS, so truncate
63 // to at most COLS characters
64 strncpy(cmdoutlines[row],ln,COLS);
65 // remove EOL character
66 cmdoutlines[row][MAXCOL-1] = 0;
67 }
68 ncmdlines = row;
69 close(p); // close pipe
70 }
71

72 // displays last part of command output (as much as fits in screen)
73 showlastpart()
74 { int row;
75 clear(); // curses clear-screen call
76 // prepare to paint the (last part of the) ’ps ax’ output on the screen
77 // two cases, depending on whether there is more output than screen rows;
78 // first, the case in which the entire output fits in one screen:

5

79 if (ncmdlines <= LINES) { // LINES is an int maintained by the curses
80 // library, equal to the number of lines in
81 // the screen
82 cmdstartrow = 0;
83 nwinlines = ncmdlines;
84 }
85 else { // now the case in which the output is bigger than one screen
86 cmdstartrow = ncmdlines - LINES;
87 nwinlines = LINES;
88 }
89 cmdlastrow = cmdstartrow + nwinlines - 1;
90 // now paint the rows to the screen
91 for (row = cmdstartrow, winrow = 0; row <= cmdlastrow; row++,winrow++)
92 mvaddstr(winrow,0,cmdoutlines[row]); // curses call to move to the
93 // specified position and
94 // paint a string there
95 refresh(); // now make the changes actually appear on the screen,
96 // using this call to the curses library
97 // highlight the last line
98 winrow--;
99 highlight();

100 }
101

102 // moves up/down one line
103 updown(int inc)
104 { int tmp = winrow + inc;
105 // ignore attempts to go off the edge of the screen
106 if (tmp >= 0 && tmp < LINES) {
107 // rewrite the current line before moving; since our current font
108 // is non-BOLD (actually A_NORMAL), the effect is to unhighlight
109 // this line
110 mvaddstr(winrow,0,cmdoutlines[cmdstartrow+winrow]);
111 // highlight the line we’re moving to
112 winrow = tmp;
113 highlight();
114 }
115 }
116

117 // run/re-run "ps ax"
118 rerun()
119 { runpsax();
120 showlastpart();
121 }
122

123 // kills the highlighted process
124 prockill()
125 { char *pid;
126 // strtok() is from C library; see man page
127 pid = strtok(cmdoutlines[cmdstartrow+winrow]," ");
128 kill(atoi(pid),9); // this is a Unix system call to send signal 9,
129 // the kill signal, to the given process
130 rerun();
131 }
132

133 main()
134 { char c;
135 // window setup, next 3 lines are curses library calls, a standard
136 // initializing sequence for curses programs
137 scrn = initscr();
138 noecho(); // don’t echo keystrokes
139 cbreak(); // keyboard input valid immediately, not after hit Enter
140 // run ’ps ax’ and process the output
141 runpsax();
142 // display in the window
143 showlastpart();
144 // user command loop
145 while (1) {
146 // get user command
147 c = getch();
148 if (c == ’u’) updown(-1);
149 else if (c == ’d’) updown(1);

6

150 else if (c == ’r’) rerun();
151 else if (c == ’k’) prockill();
152 else break; // quit
153 }
154 // restore original settings and leave
155 endwin();
156 }

3.3 A Note on “Cooked” and “Raw” Modes in the Examples

In most programs you write, keyboard actions are in cooked mode. This means that your keyboard input is
not sent to the program (e.g. not sent to the scanf() function or to cin) until you hit the Enter key. This gives
you a chance to use the Backspace key to erase a character which you typed but now wish to “rescind.”
Again, this means that your program never sees the character you erase, nor does it see the Backspace
character (ASCII 8) itself.

Remember, when you type at the keyboard, the characters go to the operating system (OS). The OS normally
passes those characters to your application program (e.g. to its call to scanf() or cin), but if the OS sees the
Backspace character, the OS does NOT pass it on to the program. In fact, the OS doesn’t pass any characters
at all to the program until the user hits the Enter key.

The other mode is raw mode. Here the OS passes every character on to the application program. If the user
hits the Backspace key, it’s just treated as any other character, with no special action taken. The application
program then receives an ASCII 8 character, and it’s up to the programmer to decide what to do with it.

You can switch from cooked to raw mode using the cbreak() function, and back to cooked by calling
nocbreak().

Similarly, the default mode is for the OS to echo characters. If the user types the A key (and not Shift), the
OS will then write ‘a’ to the screen.4 There are times when we don’t want echoing, such as in the examples
we’ve seen here, and also other situations such as password entry. Well, we can turn off the echo by calling
noecho(), and turn it back on again via echo().

4 Important Debugging Notes

Don’t use printf() or cout for debugging! Make sure you use debugging tool, for example GDB or better
the DDD interface to GDB. If you are not using a debugging tool for your daily programming work, you are
causing yourself unnecessary time and frustration. See my debugging slide show, at http://heather.
cs.ucdavis.edu/˜matloff/debug.html.

With curses programs, you don’t really have the option of using printf() or cout for debugging anyway,
as the output of those actions would become mixed with that of your application. So a debugging tool is a
necessity. Here we will curses debugging with GDB and DDD, as they are the best known in the Unix
world.5 The problem is that you still need to do something to separate your debugging output from your
curses application’s output. Here I show how.

4Note, though, that even though the ‘a’ appears on the screen, the application programm still has not received it, which it won’t
do until the user hits the Enter key.

5This assumes prior knowledge of GDB or DDD. See the URL listed above.

7

http://heather.cs.ucdavis.edu/~matloff/debug.html
http://heather.cs.ucdavis.edu/~matloff/debug.html

4.1 GDB

Start up GDB as usual in some text window. Then choose another window in which your curses appli-
cation will run, and determine the device name for that latter window (which we will call the “execution
window”). To do this, run the Unix tty command in that window. Let’s suppose for example that the output
of the command is “/dev/pts/10”. Then within GDB issue the command

(gdb) tty /dev/pts/10

We must then do one more thing before issuing the run command to GDB. Go to the execution window,
and type

sleep 10000

Unix’s sleep command has the shell go inactive for the given amount of time, in this example 10,000
seconds. This is needed so that any input we type in that window will be sure to go to our program, rather
than to the shell.

Now go back to GDB and execute run as usual. Remember, whenever your program reaches points at which
it will read from the keyboard, you will have to go to the execution window and type there (and you will see
the output from the program there too). When you are done, type ctrl-C in the execution window, so as to
kill the sleep command and make the shell usable again.

Note that if something goes wrong and your program finishes prematurely, that execution window may
retain some of the nonstandard terminal settings, e.g. cbreak mode. To fix this, go to that window and type
ctrl-j, then the word ‘reset’, then ctrl-j again.

4.2 DDD

Things are much simpler in DDD. Just click on View | Execution Window, and a new window will pop up
to serve as the execution window.

5 Some of the Major Curses APIs, Attributes and Environment Variables

5.1 Environment

• Row and column numbers in a window start at 0, top to bottom and left to right. So, the top left-hand
corner position is (0,0).

• LINES, COLS:

The number of lines and columns in your window.

5.2 APIs

Here are some of the curses functions you can call6 Note that the functions listed here comprise only a
small subset of what is available. There are many other things you can do with curses, such as subwin-

6Many are actually macros, not functions.

8

dowing, forms-style input, etc.; see Section 6 for resources.

• WINDOW *initscr():

REQUIRED. Initializes the whole screen for curses . Returns a pointer to a data structure of type
WINDOW, used for some other functions.

• endwin():

Resets the terminal, e.g. restores echo, cooked (non-cbreak) mode, etc.

• cbreak():

Sets the terminal so that it reads characters from keyboard immediately as they are typed, without
waiting for carriage return. Backspace and other control characters (including the carriage return
itself) lose their meaning.

• nocbreak():

Restores normal mode.

• noecho():

Turns off echoing of the input characters to the screen.

• echo():

Restores echo.

• clear():

Clears screen, and places cursor in upper-left corner.

• move(int, int):

Moves the cursor to the indicated row and column.

• addch(char):

Writes the given character at the current cursor position, overwriting what was there before, and
moving the cursor to the right by one position.

• insch(char):

Same as addch(), but inserts instead of overwrites; all characters to the right move one space to the
right.

• mvaddstr(int, int, *char):

Moves the cursor to the indicated row and column, and then writes the string to that position.

• refresh():

Update the screen to reflect all changes we have requested since the last call to this function. What-
ever changes we make, e.g. by calling addch() above, will NOT appear on the screen until we call
refresh().

• delch():

Delete character at the current cursor position, causing all characters to the right moving one space to
the left; cursor position does not change.

9

• int getch():

Reads in one character from the keyboard.

• char inch():

Returns the character currently under the cursor.

• getyx(WINDOW *, int, int):

Returns in the two ints the row and column numbers of the current position of the cursor for the given
window.7

• getmaxyx(WINDOW *, int, int):

Returns in the two ints the number of rows and columns for the given window.

• scanw(), printw():

Works just like scanf() and printf(), but in a curses environment. Avoid use of scanf() and printf()
in such an environment, which can lead to bizarre results. Note that printw() and scanw() will
do repeated addch() calls, so they will overwrite, not insert. Note too that scanw() scans until it
encounters a newline or Enter character, which is also true for wgetstr().

• attron(const), attroff()const:

Turns the given attribute on or off.

5.3 Attributes

Characters can be displayed in various manners, such as normal (A NORMAL) and bold (A BOLD). They
can be controlled via the APIs attron() and attroff(). When the former is called, all writing to the screen
uses the attribute specified in the argument, until the latter is clled.

6 To Learn More

The first level of help is available in the man pages. Type

man curses

(you may have to ask for ncurses instead of curses). The individual functions have man pages too.

There are many good tutorials on the Web. Plug “curses tutorials” or “ncurses tutorials” into your favorite
search engine. A tutorial you might start with is at www.linux.com/howtos/NCURSES-Programming-HOWTO/
index.shtml.

Note, though, that some of these are tutorials for non-C usage, e.g. for Perl or Python. I don’t recommend
these (including my own, for Python). Not only is there different syntax but also the APIs often have some
differences.

7Again, this is a macro, so these are ints rather than pointers to ints.

10

www.linux.com/howtos/NCURSES-Programming-HOWTO/index.shtml
www.linux.com/howtos/NCURSES-Programming-HOWTO/index.shtml

	History
	Purpose of the Curses Library
	Evolution of the Role of Curses

	Include and Library Files
	Two Examples
	Simple, Quick Introductory Example
	A Second, More Useful Example
	A Note on ``Cooked'' and ``Raw'' Modes in the Examples

	Important Debugging Notes
	GDB
	DDD

	Some of the Major Curses APIs, Attributes and Environment Variables
	Environment
	APIs
	Attributes

	To Learn More

