[f 2-1

Chapter 2 - Data Representatioh\

Computer Architecture and
Organization

Miles Murdocca and Vincent Heuring

COMPUTER ARCHITECTURE

An Integrated

& ORGANIZATION Approach

Chapter 2 — Data
Representation

MILES MURDOCCA
VINCENT HEURIN G

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

¥

[f 2-2

Chapter 2 - Data Representatioh\

Chapter Contents

2.1 Fixed Point Numbers
2.2 Floating-Point Numbers

2.3 Case Study: Patriot Missile Defense Failure Caused by

Loss of Precision
2.4 Character Codes

Qomputer Architecture and Organization by M. Murdocca and V. Heuring

© 2007 M. Murdocca and V. Heuring

Y

([2-3 Chapter 2 - Data Representation\\
Fixed Point Numbers

- Using only two digits of precision for signed base 10 numbers, the
range (interval between lowest and highest numbers) is

[-99, +99] and the precision (distance between successive numbers) is
1.

- The maximum error, which is the difference between the value of a
real number and the closest representable number, is 1/2 the
precision. For this case, the erroris 1/2 x 1 = 0.5.

- If we choose a =70, b =40, and ¢ =-30, then a + (b + ¢) =80 (which
is correct) but (a + b) + ¢ =-30 which is incorrect. The problem is that
(a + b) is +110 for this example, which exceeds the range of +99, and
so only the rightmost two digits (+10) are retained in the intermediate
result. This is a problem that we need to keep in mind when
representing real numbers in a finite representation.

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

[fz-4 Chapter 2 - Data Representatioh\
Weighted Position Code

- The base, or radix of a number system defines the range of possible
values that a digit may have: 0 — 9 for decimal; 0,1 for binary.

« The general form for determining the decimal value of a number is
given by:
n—1
1
Value = E b,k
1 = —m

541.25,,=5%x10°+4x10"+1x10°+2x 107 + 5 x 102

Example:

= (500),¢ + (40)15 + (1)10 + (2/10)40 + (5/100),

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

[fz-s Chapter 2 - Data Representatioh

Base Conversion with the Remainder
Method

Example: Convert 23.375,, to base 2. Start by converting the integer
portion:

Integer Remainder
2372 = 11 | -« Least significant bit
|
\]
112 = 5 1
|
\/
52 = 2 1
|
\]
22 = 1 0
]
\/
12 = 0 | «.«— Most significant bit

(23)10 = (10111),

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

7 2e

Chapter 2 - Data Representatioh\

Base Conversion with the
Multiplication Method

« Now, convert the fraction:

*7 Most significant bit
375 X 2 = 0.75
|
\/
75 X 2 = 1.5
|
Y
) X 2 = 1.0
+— Least significant bit

(.375);0 = (.011),

- Putting it all together, 23.375,, = 10111.011,

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

¥

[f 2.7

Qomputer Architecture and Organization by M. Murdocca and V. Heuring

2 X 2 0.4
I

Y

4 X 2 0.8
|

\]

8 X 2 1.6
I

Y

6 X 2 1.2
|

Y

2 X 2 0.4

Chapter 2 - Data Representatioh\

Nonterminating Base 2 Fraction

- We can’t always convert a terminating base 10 fraction into an
equivalent terminating base 2 fraction:

© 2007 M. Murdocca and V. Heuring

Y

7 28

0

1

10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111

Binary
(base 2)

Octal
(base 8)

0

NN B W=

7
10
11
12
13
14
15
16
17

Qomputer Architecture and Organization by M. Murdocca and V. Heuring

Decimal
(base 10)

0NN bW — O

ettt
b B W= OO

Chapter 2 - Data Representatioh\

Base 2, 8, 10, 16 Number Systems

Example: Show a column for ternary (base 3). As an extension of that,
convert 14,, to base 3, using 3 as the divisor for the remainder method
(instead of 2). Result is 112,

Hexadecimal

(base 16)

MmO OWP 0w ao v b W — O

© 2007 M. Murdocca and V. Heuring

Y

([2-9 Cl:apter 2 - Data Representation\\
More on Base Conversions

- Converting among power-of-2 bases is particularly simple:

1011, = (10,)(11,) = 23,
23, = (2,)(3,) = (10,)(11,) = 1011,
101010, = (101,)(010,) = 52

01101101, = (0110,)(1101,) = 6D,

- How many bits should be used for each base 4, 8, efc., digit? For base
2, in which 2 = 21, the exponent is 1 and so one bit is used for each base
2 digit. For base 4, in which 4 = 22, the exponent is 2, so so two bits are
used for each base 4 digit. Likewise, for base 8 and base 16, 8 = 23 and
16 = 24, and so 3 bits and 4 bits are used for base 8 and base 16 digits,
respectively.

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

Binary Addition

 This simple binary addition example provides background for the signed
number representations to follow.

[fz-m Chapter 2 - Data Representatioh

Carry in = 0 0 0 0 | 1 1 1
OperandsIZ 0 0 1 : | | 1 1
+0 +1 +0 +1 +0 + 1 + 0 + 1
o0 01 01 10 01 10 10 11
Carry Sum Example:

out Carry 1 1T 1 1 0000
Addend: 4 01111100 (124)
Augend:B + 0 1 0 1 1 01 0 (90)
Sum 1 1010110 (214),

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring jj

([2-11 Chapter 2 - Data Representatioh\
Signhed Fixed Point Numbers

« For an 8-bit number, there are 28 = 256 possible bit patterns. These bit
patterns can represent negative numbers if we choose to assign bit
patterns to numbers in this way. We can assign half of the bit patterns
to negative numbers and half of the bit patterns to positive numbers.

« Four signed representations we will cover are:

Signed Magnitude

One’ s Complement

Two’ s Complement

Excess (Biased)

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

[fz-u Chapter 2 - Data Representatioh\

3-Bit Signed Integer Representations
Decimal Unsigned Sign-Mag. 1’s Comp. 2’s Comp. Excess 4
7 111 — — — —
6 110 — — — —
5 101 — — — —
. 100 — - — —
3 011 011 011 011 111
2 010 010 010 010 110
1 001 001 001 001 101
+0 000 000 000 000 100
—0 — 100 111 000 100
-1 — 101 110 111 011
—2 - 110 101 110 010
-3 - 111 100 101 001
—4 — — — 100 000

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring jj

Signed Magnitude

- Also know as “sign and magnitude,” the leftmost bit is the sign (0 =
positive, 1 = negative) and the remaining bits are the magnitude.

« Example:

+25,, = 00011001,
-25., = 10011001,

- Two representations for zero: +0 = 00000000,, -0 = 10000000..

- Largest number is +127, smallest number is -127,,, using an 8-bit
representation.

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

[/2-13 Chapter 2 - Data Representatioh\

Y

(fz-m Chapter 2 - Data Representatioh\
One’ s Complement

- The leftmost bit is the sign (0 = positive, 1 = negative). Negative of a
number is obtained by subtracting each bit from 2 (essentially,
complementing each bit from 0 to 1 or from 1 to 0). This goes both

ways: converting positive numbers to negative numbers, and converting
negative numbers to positive numbers.

« Example:

+25,, = 00011001,

- Two representations for zero: +0 = 00000000, -0 = 11111111,

- Largest number is +127,,, smallest number is -127,,, using an 8-bit
representation.

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

(fzqs Chapter 2 - Data Representatioh\
Two’ s Complement

- The leftmost bit is the sign (0 = positive, 1 = negative). Negative of a
number is obtained by adding 1 to the one’ s complement negative.
This goes both ways, converting between positive and negative
numbers.

- Example (recall that -25,, in one’ s complement is 11100110,):
+25,,=00011001,
-25,, = 11100111,

 One representation for zero: +0 = 00000000,, -0 = 00000000,

- Largest number is +127,,, smallest number is -128,,, using an 8-bit
representation.

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

([2-16] Chapter 2 - Data Representation\\
Excess (Biased)

« The leftmost bit is the sign (usually 1 = positive, 0 = negative). Positive
and negative representations of a number are obtained by adding a
bias to the two’ s complement representation. This goes both ways,
converting between positive and negative numbers. The effect is that
numerically smaller numbers have smaller bit patterns, simplifying
comparisons for floating point exponents.

- Example (excess 128 “adds” 128 to the two’ s complement version,
ignoring any carry out of the most significant bit) :

+12,, = 10001100,
-12,, = 01110100,

 One representation for zero: +0 = 10000000,, -0 = 10000000.,.

- Largest number is +127,,, smallest number is -128,,, using an 8-bit
representation.

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

(fz-w

+

Sign

Chapter 2 - Data Representatioh\

Base 10 Floating Point Numbers

 Floating point numbers allow very large and very small numbers to be
represented using only a few digits, at the expense of precision. The
precision is primarily determined by the number of digits in the fraction
(or significand, which has integer and fractional parts), and the range is
primarily determined by the number of digits in the exponent.

- Example (+6.023 x 1023):

Position of decimal point

'

20131161« [0]2]]3

Exponent Significand
(two digits) (four digits)

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

¥

(/2-18 _] Chapter 2 - Data Representation\\
Normalization

- The base 10 number 254 can be represented in floating point form as
254 x 109, or equivalently as:

25.4 x 101, or 2.54 x 102, or
254 x 103, or .0254 x 104, or

infinitely many other ways, which creates problems when making
comparisons, with so many representations of the same number.

* Floating point numbers are usually normalized, in which the radix point
is located in only one possible position for a given number.

 Usually, but not always, the normalized representation places the radix

point immediately to the left of the leftmost, nonzero digit in the fraction,
as in: .254 x 103,

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

(fz-w Chapter 2 - Data Representatioh\
Floating Point Example

+ Represent .254 x103 in a normalized base 8 floating point format with a
sign bit, followed by a 3-bit excess 4 exponent, followed by four base 8

digits.
- Step #1: Convert to the target base.
254 x 103 = 254, ,. Using the remainder method, we find that 254, =

376 x 8°;
254/8 =31 R 6
31/8=3R7
3/8=0R3

« Step #2: Normalize: 376 x 8% = .376 x 83.

- Step #3: Fill in the bit fields, with a positive sign (sign bit = 0), an
exponent of 3 + 4 =7 (excess 4), and 4-digit fraction = .3760:

O 111 . 011 111 110 000

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

(/2-20 Chapter 2 - Data Representation\\
Error, Range, and Precision

* In the previous example, we have the base b = 8, the number of
significant digits (not bits!) in the fraction s = 4, the largest exponent
value (not bit pattern) M = 3, and the smallest exponent value m = -4.

* In the previous example, there is no explicit representation of 0, but
there needs to be a special bit pattern reserved for O otherwise there
would be no way to represent 0 without violating the normalization rule.
We will assume a bit pattern of 0 000 000 000 000 000 represents 0.

- Using b, s, M, and m, we would like to characterize this floating point
representation in terms of the largest positive representable number,
the smallest (nonzero) positive representable number, the smallest gap
between two successive numbers, the largest gap between two
successive numbers, and the total number of numbers that can be
represented.

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring //

[f 2-21

Chapter 2 - Data Representatioh\

Error, Range, and Precision (cont’)

« Largest representable number: bM x (1 - b%) =83 x (1 - 84)

- Smallest representable number: b" x b1 =84-1=8>

« Largest gap: bMx bs=83-4=8"1

- Smallest gap: b" x b$=8%-4=838

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

Y

(fz-zz Chapter 2 - Data Representation\\
Error, Range, and Precision (cont’)

® © © 6

2 X (M-m)+1) x (b-1) x b1 + 1
l l L 1 —
The number First digit Remaining T
Sign bit of exponents of fraction digits of Zero
fraction

« Number of representable numbers: There are 5 components: (A) sign
bit; for each number except 0 for this case, there is both a positive and
negative version; (B) (M- m) + 1 exponents; (C) b - 1 values for the
first digit (0 is disallowed for the first normalized digit); (D) b5 values
for each of the s-1 remaining digits, plus (E) a special representation
for 0. For this example, the 5 components result in: 2 x ((3 — (-4)) + 1) x
(8 - 1) x 8%1 + 1 numbers that can be represented. Notice this number
must be no greater than the number of possible bit patterns that can be
generated in 16 bits, which is 216,

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

[f 2-23

Chapter 2 - Data Representatioh\

Example Floating Point Format

I\)|LL)

Nl——>
|

3 E N | W2
LI
s

« Smallest number is 1/8

- Largest number is 7/4

- Smallest gap is 1/32

- Largestgapis 1/4

* Number of representable numbers is 33.

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

Y

[fz-24 Chapter 2 - Data Representatioh\

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

Gap Size Follows Exponent Size

- The relative error is approximately the same for all numbers.

- If we take the ratio of a large gap to a large number, and compare that
to the ratio of a small gap to a small number, then the ratios are the
same:

A large gap > bMs b
A large number > pMx (1 —b) 1 b bs—]
A small gap > bm=s b
A small number > pmx(1-—b) 1-bs b1

(f 2-25

the -2 exponent: .09375.

09375 x 2
1875 2
375 2
e X
D X

- Thus, (.09375),, = (.00011),..

N N

0.1875
0.375
0.75

Conversion Example

- Example: Convert (9.375 x 102),, to base 2 scientific notation

- Start by converting from base 10 floating point to base 10 fixed point by
moving the decimal point two positions to the left, which corresponds to

* Next, convert from base 10 fixed point to base 2 fixed point:

1.5
1.0

- Finally, convert to normalized base 2 floating point:

00011 =.00011 x20=1.1 x 24

Qomputer Architecture and Organization by M. Murdocca and V. Heuring

Chapter 2 - Data Representatioh\

© 2007 M. Murdocca and V. Heuring /j

[f 2-26

Single
precision

/

Sign
(1 bit)

e
precision

\|
Doubl

Chapter 2 - Data Representatioh\

IEEE-754 Floating Point Formats

32 bits
/\
| |
8 bits 23 bits
Exponent Fraction
64 bits
/\
11 bits 52 bits
Exponent Fraction

Qomputer Architecture and Organization by M. Murdocca and V. Heuring

© 2007 M. Murdocca and V. Heuring

Y

([2-27 Chapter 2 - Data Representatioﬁ
IEEE-754 Examples
Value Bit Pattern
Sign Exponent Fraction

(a) +1.101 x 23 0 1000 0100 101 0000 0000 0000 0000 0000
(b) —1.01011 x2-126 | 0000 0001 010 1100 0000 0000 0000 0000
(c) +1.0 x 2127 0 11111110 000 0000 0000 0000 0000 0000
(d) +0 0 0000 0000 000 0000 0000 0000 0000 0000
(e) -0 I 0000 0000 000 0000 0000 0000 0000 0000
() +o0 0 11111111 000 0000 0000 0000 0000 0000
(g) +2-128 0 0000 0000 010 0000 0000 0000 0000 0000
(h) +NaN 0 11111111 0110111 0000 0000 0000 0000
(1) +2-128 0O O11ortr1rtl 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000

© 2007 M. Murdocca and V. Heuring)j

Qomputer Architecture and Organization by M. Murdocca and V. Heuring

(fz-zs Chapter 2 - Data Representation\\
IEEE-754 Conversion Example

- Represent -12.625,, in single precision IEEE-754 format.
- Step #1: Convert to target base. -12.625,, =-1100.101,
- Step #2: Normalize. -1100.101, =-1.100101, x 2°

- Step #3: Fill in bit fields. Sign is negative, so sign bit is 1. Exponent is
in excess 127 (not excess 128!), so exponent is represented as the
unsigned integer 3 + 127 = 130. Leading 1 of significand is hidden, so
final bit pattern is:

1 1000 0010 . 1001 0100 OOO0O 0000 0000 000

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring /j

[f 2-29

« According to the

Government, a

loss of precision in

converting 24-bit Search action
. . .. locates missile
integers into 24-bit ¢, ewhere
floating point within beam
numbers was

responsible for the

failure of a Patriot Missile

anti-missile

Effect of Loss of Precision

General o
Accounting Office Va:!ldatlon
of the U.S. action

Chapter 2 - Data Representatioh\

Missile
outside of
range gate

Range
Gate

Area

Patriot
Radar
System

battery.

Qomputer Architecture and Organization by M. Murdocca and V. Heuring

© 2007 M. Murdocca and V. Heuring /j

(7 230

- ASCIl is a 7-bit code,
commonly stored in 8-
bit bytes.

- “ATisat41,5. To
convert upper case
letters to lower case
letters, add 20,,. Thus
“a” is at 41,5 + 20,6 =
6146

- The character “5” at
position 354 is
different than the
number 5. To convert
character-numbers
into number-numbers,
subtract 30,4: 3544 -
30,6 = 5.

Chapter 2 - Data Representatioh\

Qomputer Architecture and Organization by M. Murdocca and V. Heuring

00 NUL|10 DLE |20 SP |30 0 |40 @ |50 P |60 ° 70 p
01 SOH| 11 DC1 |21 ! |31 1 |41 A |51 Q |61 a |71 q
02 STX |12 DC2 |22 " |32 2 |42 B |52 R |62 b |72
03 ETX |13 DC3 |23 # |33 3 |43 C |53 S |63 ¢ |73 s
04 EOT |14 DC4 |24 § |34 4 |44 D |54 T |64 d |74 t
05 ENQ|I5 NAK|25 % |35 5 |45 E |5 U [65 e [75 u
06 ACK|16 SYN|26 & |36 6 |46 F |5 V |66 f |76 v
07 BEL | 17 ETB |27 ' 37 7 |47 G |57 W |67 g |77 w
08 BS |18 CAN|28 (|38 8 |48 H |58 X |68 h |78 x
09 HT |19 EM |29) |39 9 |49 I |59 Y [69 i [79 vy
0A LF IASUB|[2A * [3A : [4A J [5A Z |[6A j |7A =z
0B VT |IBESC|2B + |3B : [4B K [5B [[6B k [|7B {
0C FF ICFS |2C¢ ~ |3C < [4C L [5C \ [eC 1 [|7C |
ODCR |[IDGS [2D - |3D = |4D M |5D] |6D m |7D }
OE SO [IE RS [2E . [3E > [4E N |[SE ~ |6E n |7E ~
OF SI IFUS |2F / |3F ? |4F O |5F _ [6F o |7F DEL
NUL Null FF Form feed CAN Cancel

SOH Start of heading CR Carriage return EM End of medium
STX Start of text SO Shift out SUB Substitute
ETX End of text SI Shift in ESC Escape

EOT End of transmission DLE Data link escape FS File separator
ENQ Enquiry DC1 Device control 1 GS Group separator
ACK Acknowledge DC2 Device control 2 RS Record separator
BEL Bell DC3 Device control 3 US Unit separator
BS Backspace DC4 Device control 4 SP Space

HT Horizontal tab NAK Negative acknowledge DEL Delete

LF Line feed SYN Synchronous idle

VT Vertical tab ETB End of transmission block

© 2007 M. Murdocca and V. Heuring jj

[/ 2-31

EBCDIC

Character

Code

EBCDIC is an 8-

bit code.

Start of text

Data Link Escape

Backspace
Acknowledge

Start of Heading

Enquiry
Escape
Bypass
Cancel
Restore
Shift In
Shift Out
Delete
Substitute
New Line
Line Feed

Reader Stop
Punch Off
Digit Select
Punch On
Set Mode
Lower Case

Cursor Control
Carn'age Return
End of Medium

Form Feed
Tape Mark
Upper Case

Field Separator
Horizontal Tab

Vertical Tab
Upper Case

Chapter 2 - Data Representatioh\

D(
D(
D(
Cl
CU
CU
SY
IF
EQ
ET]
N
SM
SQ
IG
IR
U

00 NUL
01 SOH
02 STX
03 ETX
04 PF
05 HT
06 LC
07 DEL
08

09

0A SMM
0B VT
0C FF
0D CR
0E SO
OF SI
10 DLE
11 DCI
12 DC2
13 T™M
14 RES
15 NL
16 BS
17 IL
18 CAN
19 EM
1A CC
1B CUI
1C IFS
1D IGS
1E IRS
IF IUS

20 DS
21 SOS
22 FS
23
24
25
26
27
28
29
2A SM
2B CU2
2C

2D ENQ
2E ACK
2F BEL
30
31
32
33
34
35
36
37
38
39
3A
3B CU3
3C DC4
3D NAK
3E

3F SUB

BYP
LF

ETB
ESC

SYN

PN
RS
uC
EOT

40 SP
41
42
43

45

46

47

48

49

4A ¢
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
SA !
5B §
5C -
5D)
5E
5F -

— + ~ A

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
TA
7B
7C
7D
7E
TF

-® 3 -

80
81
82
83
84
85
86
87
88
89
BA
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E

9F

= T0e 0 Q0 e

—_—

8

=0T O B

A0
Al
A2
A3
A4
AS
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
Bl
B2
B3
B4
BS
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

N< ¥ 3 < = =+ w

Co
Cl1
C2
C3
C4
C5
Co6
Cc7
C8
c9
CA
CB
CcC
CD
CE
CF
DO
Dl
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE

DF

—~ T QMmO OwpE~~

AODOZE E R =

EO
El
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
Fl
F2
F3
F4
ES
F6
E7
F8
F9
FA
FB
FC
FD
FE

FF

\

N<SHYEZ<a-Hw

— O 0 I Nk W= O

Qomputer Architecture and Organization by M. Murdocca and V. Heuring

© 2007 M. Murdocca and V. Heuring

Y

[/2-32 Chapter 2 - Data Representatioh\

0000 NUL [0020 SP [0040 @ |0060 ° 0080 Ctrl [00A0 NBS]100CO A [00E0 a
0001 SOH 0021 ! 0041 A [0061 a [0081 Ctrl | 00A1 ; 00C1 A |O00El 4
0002 STX [0022 " |0042 B |0062 b |0082 Ctrl |00A2 ¢ |00C2 A |00E2 a4
0003 ETX [0023 # [0043 C [0063 ¢ [0083 Ctrl [00A3 £ |[00C3 A |00E3 i
] 0004 EOT [0024 $ [0044 D |0064 d |0084 Ctrl |00A4 = |00C4 A |[O00E4 i
U n ICOde 0005 ENQ| 0025 % (0045 E 0065 e [0085 Cul [00AS Y |00C5 A |00ES &
0006 ACK|[0026 & 0046 F [0066 f [0086 Ctrl | 00A6 . 00C6 A |00E6 @
0007 BEL [0027 ' 0047 G |0067 g [0087 Ctrl |00A7 § [00C7 C [O0E7 ¢
h t 0008 BS [0028 ([0048 H [0068 h [0088 Ctrl | 00A8 ~ |00C8 E |00E8 &
C arac er 0009 HT [0029) |0049 1 0069 i 0089 Ctrl [00A9 © [00C9 E [00E9 ¢
000A LF | 002A * [004A) 006A 008A Ctrl | 00AA 2 |00CA E |00EA &
000B VT [002B + |[004B K |006B k |008B Ctrl |00AB « |00CB E |[O00EB &
COde 000C FF | 002C ~ |004C L [006C 1 008C Ctrl | 00AC — [o00CC | 00EC i
000DCR [002D - [004D M [006D m |[008D Ctrl [00AD -~ [00CD i 00ED i
000E SO [002E . [004E N [006E n |008E Ctrl |00AE ® |00CE I 00EE 1
000F SI 002F / |004F O |006F o |008F Ctrl [00AF — |[00CF T [OOEF i
0010 DLE [0030 0 0050 P 0070 p [0090 Ctrl |00BO ° 00D0 D [00F0 ¢
0011 DC1 {0031 I [0051 Q 0071 q 0091 Ctrl |0OBI + |[00DI N [O0OF1 n
0012 DC2 (0032 2 0052 R 0072 r (0092 Ctrl |00B2 - 00D2 O [00F2 o
0013 DC3 (0033 3 0053 S 0073 s [0093 Ctrl |00B3 3 00D3 O [00F3 6
0014 DC4 (0034 4 0054 T 0074 t 0094 Ctrl [00B4 ° 00D4 g 00F4 o
. i i - 0015 NAK[0035 5 [0055 U 0075 u [0095 Ctrl [00BS p |00DS 00F5 &
UnICOde IS a 16 0016 SYN|[0036 6 |0056 V |0076 v |0096 Ctrl [00B6 ¢ [00D6 O [00F6 &
blt co d e 0017 ETB [0037 7 0057 W |0077 w 0097 Ctrl ()()B’[' ()()D7 X ()()F7 +
. 0018 CAN|[0038 8 0058 X [0078 x [0098 Ctrl |00B8 | 00D8 O | O00F8 o
0019 EM [0039 9 (0059 Y [0079 y 0099 Ctrl |00B9 * 0009 U [00F9 u
001A SUB [003A : |005A Z |007A z |009A Ctrl |00BA = |00DA U |00FA u
001B ESC [003B ; |005B [[007B ¢{ 009B Ctrl [00BB » [00DB U [00FB
001C FS [003C < [005C \ |007C | 009C Ctrl [00BC 1/4 | 00DC U 00FC 1
001IDGS 003D = [005D] 007D } 009D Ctrl |00BD 1/2 | 00DD Y |00FD P
001E RS |003E => [005E ~ [007E ~ |[O09E Ctrl | 00BE 3/4 |00DE y |O0OFE p
001F US | 003F 2 |00SF _ | 007F DEL | 009F Ctrl | 00BF ; | 00DF g |O00FF ¥
NUL Null SOH Start of heading CAN Cancel SP Space
STX Start of text EOT End of transmission EM End of medium DEL Delete
ETX End of text DC1 Device control 1 SUB Substitute Ctrl Control
ENQ Enquiry DC2 Device control 2 ESC Escape FF Form feed
ACK Acknowledge DC3 Device control 3 FS File separator CR Carriage return
BEL Bell DC4 Device control 4 GS Group separator SO Shift out
BS Backspace NAK Negative acknowledge RS Record separator Sl Shift in
HT Horizontal tab NBS Non-breaking space US Unit separator DLE Data link escape
LF Line feed ETB End of transmission block SYN Synchronous idle VT Vertical tab

Qomputer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring j/

