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Fixed Point Numbers!
•  Using only two digits of precision for signed base 10 numbers, the 
range (interval between lowest and highest numbers) is  
[-99, +99] and the precision (distance between successive numbers) is 
1.!

•  The maximum error, which is the difference between the value of a 
real number and the closest representable number, is 1/2 the 
precision. For this case, the error is 1/2 × 1 = 0.5.!

•  If we choose a = 70, b = 40, and c = -30, then a + (b + c) = 80 (which 
is correct) but (a + b) + c = -30 which is incorrect.  The problem is that 
(a + b) is +110 for this example, which exceeds the range of +99, and 
so only the rightmost two digits (+10) are retained in the intermediate 
result.  This is a problem that we need to keep in mind when 
representing real numbers in a finite representation.!
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Weighted Position Code!
•  The base, or radix of a number system defines the range of possible 
values that a digit may have: 0 – 9 for decimal; 0,1 for binary.!

•  The general form for determining the decimal value of a number is 
given by:!

!
!
!
Example:!

541.2510 = 5 × 102 + 4 × 101 + 1 × 100 + 2 × 10-1 + 5 × 10-2 !!

!= (500)10 + (40)10 + (1)10 + (2/10)10 + (5/100)10 ! !!

!=  (541.25)10!
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Base Conversion with the Remainder 
Method!

Example: Convert 23.37510 to base 2. Start by converting the integer 
portion:!
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Base Conversion with the 
Multiplication Method!

•  Now, convert the fraction:!

•  Putting it all together, 23.37510 = 10111.0112!
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Nonterminating Base 2 Fraction!
•  We can’t always convert a terminating base 10 fraction into an 
equivalent terminating base 2 fraction:!



2-8! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! !                    © 2007 M. Murdocca and V. Heuring 

Base 2, 8, 10, 16 Number Systems!
Example: Show a column for ternary (base 3).  As an extension of that, 
convert 1410 to base 3, using 3 as the divisor for the remainder method 
(instead of 2). Result is 1123!
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More on Base Conversions!
•  Converting among power-of-2 bases is particularly simple:!

!10112 = (102)(112) = 234!

!234 = (24)(34) = (102)(112) = 10112!

!1010102 = (1012)(0102) = 528!

!011011012 = (01102)(11012) = 6D16!

•  How many bits should be used for each base 4, 8, etc., digit? For base 
2, in which 2 = 21, the exponent is 1 and so one bit is used for each base 
2 digit. For base 4, in which 4 = 22, the exponent is 2, so so two bits are 
used for each base 4 digit. Likewise, for base 8 and base 16, 8 = 23 and 
16 = 24, and so 3 bits and 4 bits are used for base 8 and base 16 digits, 
respectively.!

!
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Binary Addition!
•  This simple binary addition example provides background for the signed 
number representations to follow.!
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Signed Fixed Point Numbers!

• !For an 8-bit number, there are 28 = 256 possible bit patterns. These bit 
patterns can represent negative numbers if we choose to assign bit 
patterns to numbers in this way. We can assign half of the bit patterns 
to negative numbers and half of the bit patterns to positive numbers.!

• !Four signed representations we will cover are:!

Signed Magnitude!

One’s Complement!

Two’s Complement!

Excess (Biased)!
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3-Bit Signed Integer Representations!
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Signed Magnitude!
• !Also know as “sign and magnitude,” the leftmost bit is the sign (0 = 

positive, 1 = negative) and the remaining bits are the magnitude.!
!

• !Example:!

+2510 = 000110012!

-2510 = 100110012!
!

• !Two representations for zero: +0 = 000000002, -0 = 100000002.!

• !Largest number is +127, smallest number is -12710, using an 8-bit 
representation.!
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One’s Complement!
• !The leftmost bit is the sign (0 = positive, 1 = negative). Negative of a 

number is obtained by subtracting each bit from 2 (essentially, 
complementing each bit from 0 to 1 or from 1 to 0). This goes both 
ways: converting positive numbers to negative numbers, and converting 
negative numbers to positive numbers.!

!

• !Example:!

+2510 = 000110012!

-2510 = 111001102!
!

• !Two representations for zero: +0 = 000000002, -0 = 111111112.!

• !Largest number is +12710, smallest number is -12710, using an 8-bit 
representation.!
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Two’s Complement!
• !The leftmost bit is the sign (0 = positive, 1 = negative). Negative of a 

number is obtained by adding 1 to the one’s complement negative. 
This goes both ways, converting between positive and negative 
numbers.!

!

• !Example (recall that -2510 in one’s complement is 111001102):!

+2510 = 000110012!

-2510 = 111001112!
!

• !One representation for zero: +0 = 000000002, -0 = 000000002.!

• !Largest number is +12710, smallest number is -12810, using an 8-bit 
representation.!
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Excess (Biased)!
• !The leftmost bit is the sign (usually 1 = positive, 0 = negative). Positive 

and negative representations of a number are obtained by adding a 
bias to the two’s complement representation. This goes both ways, 
converting between positive and negative numbers.  The effect is that 
numerically smaller numbers have smaller bit patterns, simplifying 
comparisons for floating point exponents.!

• !Example (excess 128 “adds” 128 to the two’s complement version, 
ignoring any carry out of the most significant bit) :!

+1210 = 100011002!

-1210 = 011101002!

• !One representation for zero: +0 = 100000002, -0 = 100000002.!

• !Largest number is +12710, smallest number is -12810, using an 8-bit 
representation.!
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Base 10 Floating Point Numbers!
• !Floating point numbers allow very large and very small numbers to be 

represented using only a few digits, at the expense of precision. The 
precision is primarily determined by the number of digits in the fraction 
(or significand, which has integer and fractional parts), and the range is 
primarily determined by the number of digits in the exponent.!

• !Example (+6.023 × 1023):!
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Normalization!
• !The base 10 number 254 can be represented in floating point form as 

254 × 100, or equivalently as:!

!25.4 × 101, ! !or !2.54 × 102, !or !

!.254 × 103, ! !or !.0254 × 104, !or!

infinitely many other ways, which creates problems when making 
comparisons, with so many representations of the same number.  !

• !Floating point numbers are usually normalized, in which the radix point 
is located in only one possible position for a given number. !

• !Usually, but not always, the normalized representation places the radix 
point immediately to the left of the leftmost, nonzero digit in the fraction, 
as in: .254 × 103.!
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Floating Point Example!
• !Represent .254 ×103 in a normalized base 8 floating point format with a 

sign bit, followed by a 3-bit excess 4 exponent, followed by four base 8 
digits.!

• !Step #1: Convert to the target base.!

!.254 × 103 = 25410. Using the remainder method, we find that 25410 = 
376 × 80:!

! !254/8 = 31 R 6!

! !31/8 = 3 R 7!

! !3/8 = 0 R 3!

• !Step #2: Normalize: 376 × 80 = .376 × 83.!

• !Step #3: Fill in the bit fields, with a positive sign (sign bit = 0), an 
exponent of 3 + 4 = 7 (excess 4), and 4-digit fraction = .3760:!

0  111  .  011  111  110  000!
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Error, Range, and Precision!
• !In the previous example, we have the base b = 8, the number of 

significant digits (not bits!) in the fraction s = 4, the largest exponent 
value (not bit pattern) M = 3, and the smallest exponent value m = -4.!

• !In the previous example, there is no explicit representation of 0, but 
there needs to be a special bit pattern reserved for 0 otherwise there 
would be no way to represent 0 without violating the normalization rule.  
We will assume a bit pattern of 0 000 000 000 000 000 represents 0. !

• !Using b, s, M, and m, we would like to characterize this floating point 
representation in terms of the largest positive representable number, 
the smallest (nonzero) positive representable number, the smallest gap 
between two successive numbers, the largest gap between two 
successive numbers, and the total number of numbers that can be 
represented.!
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Error, Range, and Precision (cont’)!

• !Largest representable number:  bM × (1 - b-s) = 83 × (1 - 8-4)!

!

• !Smallest representable number:  bm × b-1 = 8-4 - 1 = 8-5!

!

• !Largest gap:  bM × b-s = 83 - 4 = 8-1!

!

• !Smallest gap:  bm × b-s = 8-4 - 4= 8-8!
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Error, Range, and Precision (cont’)!

• !Number of representable numbers: There are 5 components: (A) sign 
bit; for each number except 0 for this case, there is both a positive and 
negative version; (B) (M - m) + 1 exponents; (C) b - 1 values for the 
first digit (0 is disallowed for the first normalized digit); (D) bs-1 values 
for each of the s-1 remaining digits, plus (E) a special representation 
for 0. For this example, the 5 components result in: 2 × ((3 – (-4)) + 1) × 
(8 - 1) × 84-1 + 1 numbers that can be represented. Notice this number 
must be no greater than the number of possible bit patterns that can be 
generated in 16 bits, which is 216.!
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Example Floating Point Format!

• !Smallest number is 1/8!
• !Largest number is 7/4!

• !Smallest gap is 1/32!

• !Largest gap is 1/4!

• !Number of representable numbers is 33.!
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Gap Size Follows Exponent Size!
• !The relative error is approximately the same for all numbers.!

• !If we take the ratio of a large gap to a large number, and compare that 
to the ratio of a small gap to a small number, then the ratios are the 
same:!
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Conversion Example!
• !Example:  Convert (9.375 × 10-2)10 to base 2 scientific notation!

• !Start by converting from base 10 floating point to base 10 fixed point by 
moving the decimal point two positions to the left, which corresponds to 
the -2 exponent: .09375.!

• Next, convert from base 10 fixed point to base 2 fixed point:!

! !.09375 !× !2 != !0.1875!

! !.1875 !× !2 != !0.375!

! !.375 !× !2 != !0.75!

! !.75 ! 	

× !2 != !1.5!

! !.5 ! !× !2 != !1.0!

• Thus, (.09375)10 = (.00011)2.!

• Finally, convert to normalized base 2 floating point: !

.00011 = .00011 × 20 = 1.1 × 2-4!
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IEEE-754 Floating Point Formats!
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IEEE-754 Examples!
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IEEE-754 Conversion Example!

• !Represent -12.62510 in single precision IEEE-754 format.!

• !Step #1: Convert to target base. -12.62510 = -1100.1012!

• !Step #2: Normalize. -1100.1012 = -1.1001012 × 23!

• !Step #3: Fill in bit fields. Sign is negative, so sign bit is 1. Exponent is 
in excess 127 (not excess 128!), so exponent is represented as the 
unsigned integer 3 + 127 = 130.  Leading 1 of significand is hidden, so 
final bit pattern is:!

!

1  1000 0010 . 1001 0100 0000 0000 0000 000!
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Effect of Loss of Precision!

• !According to the 
General 
Accounting Office 
of the U.S. 
Government, a 
loss of precision in 
converting 24-bit 
integers into 24-bit 
floating point 
numbers was 
responsible for the 
failure of a Patriot 
anti-missile 
battery.!
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ASCII Character Code!
• !ASCII is a 7-bit code, 

commonly stored in 8-
bit bytes.!

• !“A” is at 4116. To 
convert upper case 
letters to lower case 
letters, add 2016. Thus 
“a” is at 4116 + 2016 = 
6116.!

• !The character “5” at 
position 3516 is 
different than the 
number 5. To convert 
character-numbers 
into number-numbers, 
subtract 3016: 3516 - 
3016 = 5.!

!
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• !EBCDIC is an 8-
bit code.!
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Unicode 
Character 

Code!

• !Unicode is a 16-
bit code.!


