
2-1! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Computer Architecture and
Organization 

 

Miles Murdocca and Vincent Heuring 
!

Chapter 2 – Data
Representation!

2-2! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Chapter Contents!
2.1 Fixed Point Numbers!
2.2 Floating-Point Numbers!
2.3 Case Study: Patriot Missile Defense Failure Caused by

Loss of Precision!
2.4 Character Codes!

2-3! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Fixed Point Numbers!
• Using only two digits of precision for signed base 10 numbers, the
range (interval between lowest and highest numbers) is  
[-99, +99] and the precision (distance between successive numbers) is
1.!

• The maximum error, which is the difference between the value of a
real number and the closest representable number, is 1/2 the
precision. For this case, the error is 1/2 × 1 = 0.5.!

• If we choose a = 70, b = 40, and c = -30, then a + (b + c) = 80 (which
is correct) but (a + b) + c = -30 which is incorrect. The problem is that
(a + b) is +110 for this example, which exceeds the range of +99, and
so only the rightmost two digits (+10) are retained in the intermediate
result. This is a problem that we need to keep in mind when
representing real numbers in a finite representation.!

2-4! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Weighted Position Code!
• The base, or radix of a number system defines the range of possible
values that a digit may have: 0 – 9 for decimal; 0,1 for binary.!

• The general form for determining the decimal value of a number is
given by:!

!
!
!
Example:!

541.2510 = 5 × 102 + 4 × 101 + 1 × 100 + 2 × 10-1 + 5 × 10-2 !!

!= (500)10 + (40)10 + (1)10 + (2/10)10 + (5/100)10 ! !!

!= (541.25)10!

2-5! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Base Conversion with the Remainder
Method!

Example: Convert 23.37510 to base 2. Start by converting the integer
portion:!

2-6! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Base Conversion with the
Multiplication Method!

• Now, convert the fraction:!

• Putting it all together, 23.37510 = 10111.0112!

2-7! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Nonterminating Base 2 Fraction!
• We can’t always convert a terminating base 10 fraction into an
equivalent terminating base 2 fraction:!

2-8! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Base 2, 8, 10, 16 Number Systems!
Example: Show a column for ternary (base 3). As an extension of that,
convert 1410 to base 3, using 3 as the divisor for the remainder method
(instead of 2). Result is 1123!

2-9! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

More on Base Conversions!
• Converting among power-of-2 bases is particularly simple:!

!10112 = (102)(112) = 234!

!234 = (24)(34) = (102)(112) = 10112!

!1010102 = (1012)(0102) = 528!

!011011012 = (01102)(11012) = 6D16!

• How many bits should be used for each base 4, 8, etc., digit? For base
2, in which 2 = 21, the exponent is 1 and so one bit is used for each base
2 digit. For base 4, in which 4 = 22, the exponent is 2, so so two bits are
used for each base 4 digit. Likewise, for base 8 and base 16, 8 = 23 and
16 = 24, and so 3 bits and 4 bits are used for base 8 and base 16 digits,
respectively.!

!

2-10! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Binary Addition!
• This simple binary addition example provides background for the signed
number representations to follow.!

2-11! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Signed Fixed Point Numbers!

• !For an 8-bit number, there are 28 = 256 possible bit patterns. These bit
patterns can represent negative numbers if we choose to assign bit
patterns to numbers in this way. We can assign half of the bit patterns
to negative numbers and half of the bit patterns to positive numbers.!

• !Four signed representations we will cover are:!

Signed Magnitude!

One’s Complement!

Two’s Complement!

Excess (Biased)!

2-12! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

3-Bit Signed Integer Representations!

2-13! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Signed Magnitude!
• !Also know as “sign and magnitude,” the leftmost bit is the sign (0 =

positive, 1 = negative) and the remaining bits are the magnitude.!
!

• !Example:!

+2510 = 000110012!

-2510 = 100110012!
!

• !Two representations for zero: +0 = 000000002, -0 = 100000002.!

• !Largest number is +127, smallest number is -12710, using an 8-bit
representation.!

2-14! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

One’s Complement!
• !The leftmost bit is the sign (0 = positive, 1 = negative). Negative of a

number is obtained by subtracting each bit from 2 (essentially,
complementing each bit from 0 to 1 or from 1 to 0). This goes both
ways: converting positive numbers to negative numbers, and converting
negative numbers to positive numbers.!

!

• !Example:!

+2510 = 000110012!

-2510 = 111001102!
!

• !Two representations for zero: +0 = 000000002, -0 = 111111112.!

• !Largest number is +12710, smallest number is -12710, using an 8-bit
representation.!

2-15! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Two’s Complement!
• !The leftmost bit is the sign (0 = positive, 1 = negative). Negative of a

number is obtained by adding 1 to the one’s complement negative.
This goes both ways, converting between positive and negative
numbers.!

!

• !Example (recall that -2510 in one’s complement is 111001102):!

+2510 = 000110012!

-2510 = 111001112!
!

• !One representation for zero: +0 = 000000002, -0 = 000000002.!

• !Largest number is +12710, smallest number is -12810, using an 8-bit
representation.!

2-16! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Excess (Biased)!
• !The leftmost bit is the sign (usually 1 = positive, 0 = negative). Positive

and negative representations of a number are obtained by adding a
bias to the two’s complement representation. This goes both ways,
converting between positive and negative numbers. The effect is that
numerically smaller numbers have smaller bit patterns, simplifying
comparisons for floating point exponents.!

• !Example (excess 128 “adds” 128 to the two’s complement version,
ignoring any carry out of the most significant bit) :!

+1210 = 100011002!

-1210 = 011101002!

• !One representation for zero: +0 = 100000002, -0 = 100000002.!

• !Largest number is +12710, smallest number is -12810, using an 8-bit
representation.!

2-17! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Base 10 Floating Point Numbers!
• !Floating point numbers allow very large and very small numbers to be

represented using only a few digits, at the expense of precision. The
precision is primarily determined by the number of digits in the fraction
(or significand, which has integer and fractional parts), and the range is
primarily determined by the number of digits in the exponent.!

• !Example (+6.023 × 1023):!

2-18! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Normalization!
• !The base 10 number 254 can be represented in floating point form as

254 × 100, or equivalently as:!

!25.4 × 101, ! !or !2.54 × 102, !or !

!.254 × 103, ! !or !.0254 × 104, !or!

infinitely many other ways, which creates problems when making
comparisons, with so many representations of the same number. !

• !Floating point numbers are usually normalized, in which the radix point
is located in only one possible position for a given number. !

• !Usually, but not always, the normalized representation places the radix
point immediately to the left of the leftmost, nonzero digit in the fraction,
as in: .254 × 103.!

2-19! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Floating Point Example!
• !Represent .254 ×103 in a normalized base 8 floating point format with a

sign bit, followed by a 3-bit excess 4 exponent, followed by four base 8
digits.!

• !Step #1: Convert to the target base.!

!.254 × 103 = 25410. Using the remainder method, we find that 25410 =
376 × 80:!

! !254/8 = 31 R 6!

! !31/8 = 3 R 7!

! !3/8 = 0 R 3!

• !Step #2: Normalize: 376 × 80 = .376 × 83.!

• !Step #3: Fill in the bit fields, with a positive sign (sign bit = 0), an
exponent of 3 + 4 = 7 (excess 4), and 4-digit fraction = .3760:!

0 111 . 011 111 110 000!

2-20! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Error, Range, and Precision!
• !In the previous example, we have the base b = 8, the number of

significant digits (not bits!) in the fraction s = 4, the largest exponent
value (not bit pattern) M = 3, and the smallest exponent value m = -4.!

• !In the previous example, there is no explicit representation of 0, but
there needs to be a special bit pattern reserved for 0 otherwise there
would be no way to represent 0 without violating the normalization rule.
We will assume a bit pattern of 0 000 000 000 000 000 represents 0. !

• !Using b, s, M, and m, we would like to characterize this floating point
representation in terms of the largest positive representable number,
the smallest (nonzero) positive representable number, the smallest gap
between two successive numbers, the largest gap between two
successive numbers, and the total number of numbers that can be
represented.!

2-21! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Error, Range, and Precision (cont’)!

• !Largest representable number: bM × (1 - b-s) = 83 × (1 - 8-4)!

!

• !Smallest representable number: bm × b-1 = 8-4 - 1 = 8-5!

!

• !Largest gap: bM × b-s = 83 - 4 = 8-1!

!

• !Smallest gap: bm × b-s = 8-4 - 4= 8-8!

2-22! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Error, Range, and Precision (cont’)!

• !Number of representable numbers: There are 5 components: (A) sign
bit; for each number except 0 for this case, there is both a positive and
negative version; (B) (M - m) + 1 exponents; (C) b - 1 values for the
first digit (0 is disallowed for the first normalized digit); (D) bs-1 values
for each of the s-1 remaining digits, plus (E) a special representation
for 0. For this example, the 5 components result in: 2 × ((3 – (-4)) + 1) ×
(8 - 1) × 84-1 + 1 numbers that can be represented. Notice this number
must be no greater than the number of possible bit patterns that can be
generated in 16 bits, which is 216.!

2-23! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Example Floating Point Format!

• !Smallest number is 1/8!
• !Largest number is 7/4!

• !Smallest gap is 1/32!

• !Largest gap is 1/4!

• !Number of representable numbers is 33.!

2-24! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Gap Size Follows Exponent Size!
• !The relative error is approximately the same for all numbers.!

• !If we take the ratio of a large gap to a large number, and compare that
to the ratio of a small gap to a small number, then the ratios are the
same:!

2-25! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Conversion Example!
• !Example: Convert (9.375 × 10-2)10 to base 2 scientific notation!

• !Start by converting from base 10 floating point to base 10 fixed point by
moving the decimal point two positions to the left, which corresponds to
the -2 exponent: .09375.!

• Next, convert from base 10 fixed point to base 2 fixed point:!

! !.09375 !× !2 != !0.1875!

! !.1875 !× !2 != !0.375!

! !.375 !× !2 != !0.75!

! !.75 ! 	

× !2 != !1.5!

! !.5 ! !× !2 != !1.0!

• Thus, (.09375)10 = (.00011)2.!

• Finally, convert to normalized base 2 floating point: !

.00011 = .00011 × 20 = 1.1 × 2-4!

2-26! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

IEEE-754 Floating Point Formats!

2-27! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

IEEE-754 Examples!

2-28! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

IEEE-754 Conversion Example!

• !Represent -12.62510 in single precision IEEE-754 format.!

• !Step #1: Convert to target base. -12.62510 = -1100.1012!

• !Step #2: Normalize. -1100.1012 = -1.1001012 × 23!

• !Step #3: Fill in bit fields. Sign is negative, so sign bit is 1. Exponent is
in excess 127 (not excess 128!), so exponent is represented as the
unsigned integer 3 + 127 = 130. Leading 1 of significand is hidden, so
final bit pattern is:!

!

1 1000 0010 . 1001 0100 0000 0000 0000 000!

2-29! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Effect of Loss of Precision!

• !According to the
General
Accounting Office
of the U.S.
Government, a
loss of precision in
converting 24-bit
integers into 24-bit
floating point
numbers was
responsible for the
failure of a Patriot
anti-missile
battery.!

2-30! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

ASCII Character Code!
• !ASCII is a 7-bit code,

commonly stored in 8-
bit bytes.!

• !“A” is at 4116. To
convert upper case
letters to lower case
letters, add 2016. Thus
“a” is at 4116 + 2016 =
6116.!

• !The character “5” at
position 3516 is
different than the
number 5. To convert
character-numbers
into number-numbers,
subtract 3016: 3516 -
3016 = 5.!

!

2-31! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

• !EBCDIC is an 8-
bit code.!

2-32! Chapter 2 - Data Representation!

Computer Architecture and Organization by M. Murdocca and V. Heuring ! ! © 2007 M. Murdocca and V. Heuring

Unicode
Character

Code!

• !Unicode is a 16-
bit code.!

