
Solutions to Axler, Linear Algebra Done Right 2nd Ed.

Edvard Fagerholm
edvard.fagerholm@{helsinki.fi|gmail.com}

Beware of errors. I read the book and solved the exercises during spring break (one
week), so the problems were solved in a hurry. However, if you do find better or interesting
solutions to the problems, I’d still like to hear about them. Also please don’t put this on
the Internet to encourage copying homework solutions...

1 Vector Spaces

1. Assuming that C is a field, write z = a + bi. Then we have 1/z = z/zz = z/|z|2.
Plugging in the numbers we get 1/(a + bi) = a/(a2 + b2) − bi/(a2 + b2) = c + di. A
straightforward calculation of (c+di)(a+bi) = 1 shows that this is indeed an inverse.

2. Just calculate ((1 +
√

3)/2)3.

3. We have v + (−v) = 0, so by the uniqueness of the additive inverse (prop. 1.3)
−(−v) = v.

4. Choose a 6= 0 and v 6= 0. Then assuming av = 0 we get v = a−1av = a−10 = 0.
Contradiction.

5. Denote the set in question by A in each part.

(a) Let v, w ∈ A, v = (x1, x2, x3), w = (y1, y2, y3). Then x1 + 2x2 + 3x3 = 0 and
y1 + 2y2 + 3y3 = 0, so that 0 = x1 + 2x2 + 3x3 + y1 + 2y2 + 3y3 = (x1 + y1) +
2(x2 + y2) + 3(x3 + y3), so v+w ∈ A. Similarly 0 = a0 = ax1 + 2ax2 + 3ay3, so
av ∈ A. Thus A is a subspace.

(b) This is not a subspace as 0 6∈ A.

(c) We have that (1, 1, 0) ∈ A and (0, 0, 1) ∈ A, but (1, 1, 0)+(0, 0, 1) = (1, 1, 1) 6∈ A,
so A is not a subspace.

(d) Let (x1, x2, x3), (y1, y2, y3) ∈ A. If x1 = 5x3 and y1 = 5y3, then ax1 = 5ax3,
so a(x1, x2, x3) ∈ A. Similarly x1 + y1 = 5(x3 + y3), so that (x1, x2, x3) +
(y1, y2, y3) ∈ A. Thus A is a subspace.
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6. Set U = Z2.

7. The set {(x, x) ∈ R2 | x ∈ R} ∪ {(x,−x) ∈ R2 | x ∈ R} is closed under multiplication
but is trivially not a subspace ((x, x) + (x,−x) = (2x, 0) doesn’t belong to it unless
x = 0).

8. Let {Vi} be a collection of subspaces of V . Set U = ∩iVi. Then if u, v ∈ U . We
have that u, v ∈ Vi for all i because Vi is a subspace. Thus au ∈ Vi for all i, so that
av ∈ U . Similarly u+ v ∈ Vi for all i, so u+ v ∈ U .

9. Let U,W ⊂ V be subspaces. Clearly if U ⊂ W or W ⊂ U , then U ∪W is clearly a
subspace. Assume then that U 6⊂ W and W 6⊂ U . Then we can choose u ∈ U \W
and w ∈ W \ U . Assuming that U ∪ W is a subspace we have u + w ∈ U ∪ W .
Assuming that u + w ⊂ U we get w = u + w − u ⊂ U . Contradiction. Similarly for
u+ w ∈W . Thus U ∪W is not a subspace.

10. Clearly U = U + U as U is closed under addition.

11. Yes and yes. Follows directly from commutativity and associativity of vector addition.

12. The zero subspace, {0}, is clearly an additive identity. Assuming that we have
inverses, then the whole space V should have an inverse U such that U + V = {0}.
Since V + U = V this is clearly impossible unless V is the trivial vector space.

13. Let W = R2. Then for any two subspaces U1, U2 of W we have U1 + W = U2 + W ,
so the statement is clearly false in general.

14. Let W = {p ∈ P(F) | p =
∑n

i=0 aix
i, a2 = a5 = 0}.

15. Let V = R2. Let W = {(x, 0) ∈ R2 | x ∈ R}. Set U1 = {(x, x) ∈ R2 | x ∈ R},
U2 = {(x,−x) ∈ R2 | x ∈ R}. Then it’s easy to see that U1 + W = U2 + W = R2,
but U1 6= U2, so the statement is false.

2 Finite-Dimensional Vector Spaces

1. Let un = vn and ui = vi+vi+1, i = 1, . . . , n−1. Now we see that vi =
∑n

j=i ui. Thus
vi ∈ span(u1, . . . , un), so V = span(v1, . . . , vn) ⊂ span(u1, . . . , un).

2. From the previous exercise we know that the span is V . As (v1, . . . , vn) is a linearly
independent spanning list of vectors we know that dimV = n. The claim now follows
from proposition 2.16.
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3. If (v1 + w, . . . , vn + w) is linearly dependent, then we can write

0 = a1(v1 + w) + . . .+ an(vn + w) =
n∑
i=1

aivi + w
n∑
i=1

ai,

where ai 6= 0 for some i. Now
∑n

i=1 ai 6= 0 because otherwise we would get

0 =
n∑
i=1

aivi + w

n∑
i=1

ai =
n∑
i=1

aivi

and by the linear independence of (vi) we would get ai = 0, ∀i contradicting our
assumption. Thus

w = −

(
n∑
i=1

ai

)−1 n∑
i=1

aivi,

so w ∈ span(v1, . . . , vn).

4. Yes, multiplying with a nonzero constant doesn’t change the degree of a polynomial
and adding two polynomials either keeps the degree constant or makes it the zero
polynomial.

5. (1, 0, . . .), (0, 1, 0, . . .), (0, 0, 1, 0, . . .), . . . is trivially linearly independent. Thus F∞
isn’t finite-dimensional.

6. Clearly P(F) is a subspace which is infinite-dimensional.

7. Choose v1 ∈ V . Assuming that V is infinite-dimensional span(v1) 6= V . Thus we can
choose v2 ∈ V \ span(v1). Now continue inductively.

8. (3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1) is clearly linearly independent. Let (x1, x2, x3, x4, x5) ∈
U . Then (x1, x2, x3, x4, x5) = (3x2, x2, 7x4, x4, x5) = x2(3, 1, 0, 0, 0)+x4(0, 0, 7, 1, 0)+
x5(0, 0, 0, 0, 1), so the vectors span U . Hence, they form a basis.

9. Choose the polynomials (1, x, x2−x3, x3). They clearly span P3(F) and form a basis
by proposition 2.16.

10. Choose a basis (v1, . . . , vn). Let Ui = span(vi). Now clearly V = U1 ⊕ . . . ⊕ Un by
proposition 2.19.

11. Let dimU = n = dimV . Choose a basis (u1, . . . , un) for U and extend it to a
basis (u1, . . . , un, v1, . . . , vk) for V . By assumption a basis for V has length n, so
(u1, . . . , un) spans V .
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12. Let U = span(u0, . . . , um). As U 6= Pm(F) we have by the previous exercise that
dimU < dimPm(F) = m + 1. As (p0, . . . , pm) is a spanning list of vectors having
length m+ 1 it is not linearly independent.

13. By theorem 2.18 we have 8 = dim R8 = dimU + dimW − dim(U ∩W ) = 4 + 4 −
dim(U ∩W ). Since U +W = R8, we have that dim(U ∩W ) = 0 and the claim follows

14. Assuming that U ∩W = {0} we have by theorem 2.18 that

9 = dim R9 = dimU + dimW − dim(U ∩W ) = 5 + 5− 0 = 10.

Contradiction.

15. Let U1 = {(x, 0) ∈ R2 | x ∈ R}, U2 = {(0, x) ∈ R2 | x ∈ R}, U3 = {(x, x) ∈ R2 | x ∈
R}. Then U1 ∩ U2 = {0}, U1 ∩ U3 = {0} and U2 ∩ U3 = {0}. Thus the left-hand side
of the equation in the problem is 2 while the right-hand side is 3. Thus we have a
counterexample.

16. Choose a basis (ui1, . . . , u
i
ni

) for each Ui. Then the list of vectors (u1
1, . . . , u

m
nm

) has
length dimU1 + . . .+ dimUm and clearly spans U1 + . . .+ Um proving the claim.

17. By assumption the list of vectors (u1
1, . . . , u

m
nm

) from the proof of the previous exercise
is linearly independent. Since V = U1+. . .+Un = span(u1

1, . . . , u
m
nm

) the claim follows.

3 Linear Maps

1. Any v 6= 0 spans V . Thus, if w ∈ V , we have w = av for some a ∈ F. Now T (v) = av
for some a ∈ F, so for w = bv ∈ V we have T (w) = T (bv) = bT (v) = bav = aw. Thus
T is multiplication by a scalar.

2. Define f by e.g.

f(x, y) =
{
x, x = y
0, x 6= y

,

then clearly f satisfies the condition, but is non-linear.

3. To define a linear map it’s enough to define the image of the elements of a basis.
Choose a basis (u1, . . . , um) for U and extend it to a basis (u1, . . . , um, v1, . . . , vn) of
V . If S ∈ L(U,W ). Choose some vectors w1, . . . , wn ∈ W . Now define T ∈ L(V,W )
by T (ui) = S(ui), i = 1, . . . ,m and T (vi) = wi, i = 1, . . . , n. These relations define
the linear map and clearly T|U = S.

4. By theorem 3.4 dimV = dim nullT + dim rangeT . If u 6∈ nullT , then dim rangeT >
0, but as dim rangeT ≤ dim F = 1 we have dim rangeT = 1 and it follows that
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dim nullT = dimV −1. Now choose a basis (u1, . . . , un) for nullT . By our assumption
(u1, . . . , un, u) is linearly independent and has length dimV . Hence, it’s a basis for
V . This implies that

V = span(u1, . . . , un, u) = span(u1, . . . , un)⊕ span(u) = nullT ⊕ {au | a ∈ F}.

5. By linearity 0 =
∑n

i=1 aiT (vi) =
∑n

i=1 T (aivi) = T (
∑n

i=1 aivi). By injectivity we
have

∑n
i=1 aivi = 0, so that ai = 0 for all i. Hence (T (v1), . . . , T (vn)) is linearly

independent.

6. If n = 1 the claim is trivially true. Assume that the claim is true for n = k.
If S1, . . . , Sk+1 satisfy the assumptions, then S1 · · ·Sk is injective by the induction
hypothesis. Let T = S1 · · ·Sk. If u 6= 0, then by injectivity of Sk+1 we Sk+1u 6= 0
and by injectivity of T we have TSk+1u 6= 0. Hence TSk+1 is injective and the claim
follows.

7. Let w ∈ W . By surjectivity of T we can find a vector v ∈ V such that T (v) = w.
Writing v = a1v1 + . . .+ anvn we get w = T (v) = T (a1v1 + . . .+ anvn) = a1T (v1) +
. . .+ anT (vn) proving the claim.

8. Let (u1, . . . , un) be a basis for nullT and extend it to a basis (u1, . . . , un, v1, . . . , vk)
of V . Let U := span(v1, . . . , vk). Then by construction nullT ∩ U = {0} and for an
arbitrary v ∈ V we have that v = a1u1 + . . .+ anun + b1vn + . . .+ bkvk, so that

T (v) = b1T (v1) + . . .+ bkT (vk).

Hence rangeT = T (U).

9. It’s easy to see that (5, 1, 0, 0), (0, 0, 7, 1) is a basis for nullT (see exercise 2.8). Hence
dim rangeT = dim F4 − dim nullT = 4 − 2 = 2. Thus rangeT = F2, so that T is
surjective.

10. It’s again easy to see that (3, 1, 0, 0, 0), (0, 0, 1, 1, 1) is a basis of nullT . Hence, we get
dim rangeT = dim F5 − dim nullT = 5− 2 = 3 which is impossible.

11. This follows trivially from dimV = dim nullT + dim rangeT .

12. From dimV = dim nullT +dim rangeT it follows trivially that if we have a surjective
linear map T ∈ L(V,W ), then dimV ≥ dimW . Assume then that dimV ≥ dimW .
Choose a basis (v1, . . . , vn) for V and a basis (w1, . . . , wm) for W . We can define
a linear map T ∈ L(V,W ) by letting T (vi) = wi, i = 1, . . . ,m, T (vi) = 0, i =
m+ 1, . . . , n. Clearly T is surjective.
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13. We have that dim rangeT ≤ dimW . Thus we get dim nullT = dimV −dim rangeT ≥
dimV −dimW . Choose an arbitrary subspace U of V of such that dimU ≥ dimV −
dimW . Let (u1, . . . , un) be a basis of U and extend it to a basis (u1, . . . , un, v1, . . . , vk)
of V . Now we know that k ≤ dimW , so let (w1, . . . , wm) be a basis for W . Define
a linear map T ∈ L(V,W ) by T (ui) = 0, i = 1, . . . , n and T (vi) = wi, i = 1, . . . , k.
Clearly nullT = U .

14. Clearly if we can find such a S, then T is injective. Assume then that T is injective.
Let (v1, . . . , vn) be a basis of V . By exercise 5 (T (v1), . . . , T (vn)) is linearly inde-
pendent so we can extend it to a basis (T (v1), . . . , T (vn), w1, . . . , wm) of W . Define
S ∈ L(W,V ) by S(T (vi)) = vi, i = 1, . . . , n and S(wi) = 0, i = 1, . . . ,m. Clearly
ST = IV .

15. Clearly if we can find such a S, then T is surjective. Otherwise let (v1, . . . , vn) be a
basis of V . By assumption (T (w1), . . . , T (wn)) spans W . By the linear dependence
lemma we can make the list of vectors (T (w1), . . . , T (wn)) a basis by removing some
vectors. Without loss of generality we can assume that the first m vectors form the
basis (just permute the indices). Thus T (w1), . . . , T (wm)) is a basis of W . Define
the map S ∈ L(W,V ) by S(T (wi)) = wi, i = 1, . . . ,m. Now clearly TS = IW .

16. We have that dimU = dim nullT + dim rangeT ≤ dim nullT + dimV . Substituting
dimV = dim nullS + dim rangeS and dimU = dim nullST + dim rangeST we get

dim nullST + dim rangeST ≤ dim nullT + dim nullS + dim rangeS.

Clearly dim rangeST ≤ dim rangeS, so our claim follows.

17. This is nothing but pencil pushing. Just take arbitrary matrices satisfying the re-
quired dimensions and calculate each expression and the equalities easily fall out.

18. Ditto.

19. Let V = (x1, . . . ,n ). From proposition 3.14 we have that

M(Tv) =M(T )M(v) =

 a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n


 x1

...
xn

 =

 a1,1x1 + . . .+ a1,nxn
...

am,1x1 + . . .+ am,nxn


which shows that Tv = (a1,1x1 + . . .+ a1,nxn, . . . , am,1x1 + . . .+ am,nxn).

20. Clearly dim Mat(n, 1,F) = n = dimV . We have that Tv = 0 if and only if v =
0v1 + . . . , 0vn = 0, so nullT = {0}. Thus T is injective and hence invertible.
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21. Let ei denote the n× 1 matrix with a 1 in the ith row and 0 everywhere else. Let T
be the linear map. Define a matrix A := [T (e1), . . . , T (en)]. Now it’s trivial to verify
that

Aei = T (ei).

By distributivity of matrix multiplication (exercise 17) we get for an arbitrary v =
a1e1 + . . .+ anen that

Av = A(a1e1 + . . .+ anen) = a1Ae1 + . . .+ anAen

= a1T (e1) + . . .+ anT (en) = T (a1e1 + . . .+ anen),

so the claim follows.

22. From theorem 3.21 we have ST invertible ⇔ ST bijective ⇔ S and T bijective ⇔ S
and T invertible.

23. By symmetry it’s sufficient to prove this in one direction only. Thus if TS = I. Then
ST (Su) = S(TSu) = Su for all u. As S is bijective Su goes through the whole space
V as u varies, so ST = I.

24. Clearly TS = ST if T is a scalar multiple of the identity. For the other direction
assume that TS = ST for every linear map S ∈ L(V ).

25. Let T ∈ L(F2) be the operator T (a, b) = (a, 0) and S ∈ L(F2) the operator S(a, b) =
(0, b). Then neither one is injective and hence invertible by 3.21. However, T + S is
the identity operator which is trivially invertible. This can be trivially generalized
to spaces arbitrary spaces of dimension ≥ 2.

26. Write

A :=

 a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n

 , x =

 x1
...
xn

 .
Then the system of equations in a) reduces to Ax = 0. Now A defines a linear map
from Mat(n, 1,F) to Mat(n, 1,F). What a) states is now that the map is injective
while b) states that it is surjective. By theorem 3.21 these are equivalent.

4 Polynomials

1. Let λ1, . . . , λm be m distinct numbers and k1, . . . , km > 0 such that their sum is n.
Then

∏m
i=1(x− λi)ki is clearly such a polynomial.
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2. Let pi(x) =
∏
j 6=i(x − zj), so that deg pi = m. Now we have that pi(zj) 6= 0 if and

only if i = j. Let ci = pi(zi). Define

p(x) =
m+1∑
i=1

wic
−1
i pi(x).

Now deg p = m and p clearly p(zi) = wi.

3. We only need to prove uniqueness as existence is theorem 4.5. Let s′, r′ be other such
polynomials. Then we get that

0 = (s− s′)p+ (r − r′)⇔ r′ − r = (s− s′)p

We know that for any polynomials p 6= 0 6= q we have deg pq = deg p + deg q.
Assuming that s 6= s′ we have deg(r′ − r) < deg(s − s′)p which is impossible. Thus
s = s′ implying r = r′.

4. Let λ be a root of p. Thus we can write p(x) = (x− λ)q(x). Now we get

p′(x) = q(x) + (x− λ)q′(x).

Thus λ is a root of p′ if and only if λ is a root of q i.e. λ is a multiple root. The
statement follows.

5. Let p(x) =
∑n

i=0 aix
i, where ai ∈ R. By the fundamental theorem of calculus we

have a complex root z. By proposition 4.10 z is also a root of p. Then z and z are
roots of equal multiplicity (divide by (x − z)(x − z) which is real). Thus if we have
no real roots we have an even number of roots counting multiplicity, but the number
of roots counting multiplicity is deg p hence odd. Thus p has a real root.

5 Eigenvalues and Eigenvectors

1. An arbitrary element of U1 + . . .+Un is of the form u1 + . . .+un where ui ∈ Ui. Thus
we get T (u1 + . . . + un) = T (u1) + . . . + T (un) ∈ U1 + . . . + Un by the assumption
that T (ui) ∈ Ui for all i.

2. Let V = ∩iUi where Ui is invariant under T for all i. Let v ∈ V , so that v ∈ Ui for all
i. Now T (v) ∈ Ui for all i by assumption, so T (v) ∈ ∩Ui = V . Thus V is invariant
under T .

3. The clame is clearly true for U = {0} or U = V . Assume that {0} 6= U 6= V . Let
(u1, . . . , un) be a basis for U and extend it to a basis (u1, . . . , un, v1, . . . , vm). By
our assumption m ≥ 1. Define a linear operator by T (ui) = v1, i = 1, . . . , n and
T (vi) = v1, i = 1, . . . ,m. Then clearly U is not invariant under T .
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4. Let u ∈ null(T − λI), so that T (u)− λu = 0. ST = TS gives us

0 = S(Tu− λu) = STu− λSu = TSu− λSu = (T − λI)Su,

so that Su ∈ null(T − λI).

5. Clearly T (1, 1) = (1, 1), so that 1 is an eigenvalue. Also T (−1, 1) = (1,−1) =
−(−1, 1) so −1 is another eigenvalue. By corollary 5.9 these are all eigenvalues.

6. We easily see that T(0,0,1)=(0,0,5), so that 5 is an eigenvalue. Also T (1, 0, 0) =
(0, 0, 0) so 0 is an eigenvalue. Assume that λ 6= 0 and T (z1, z2, z3) = (2z2, 0, 5z3) =
λ(z1, z2, z3). From the assumption λ 6= 0 we get z2 = 0, so the equation is of the
form (0, 0, 5z3) = λ(z1, 0, z3). Again we see that z1 = 0 so we get the equation
(0, 0, 5z3) = λ(0, 0, z3). Thus 5 is the only non-zero eigenvalue.

7. Notice that the range of T is the subspace {(x, . . . , x) ∈ Fn | x ∈ F} and has dimension
1. Thus dim rangeT = 1, so dim nullT = n − 1. Assume that T has two distinct
eigenvalues λ1, λ2 and assume that λ1 6= 0 6= λ2. Let v1, v2 be the corresponding
eigenvectors, so by theorem 5.6 they are linearly independent. Then v1, v2 6∈ nullT ,
but dim nullT = n − 1, so this is impossible. Hence T has at most one non-zero
eigenvalue hence at most two eigenvalues.

Because T is not injective we know that 0 is an eigenvalue. We also see that
T (1, . . . , 1) = n(1, . . . , 1), so n is another eigenvalue. By the previous paragraph,
these are all eigenvalues of T .

8. Let a ∈ F. Now we have T (a, a2, a3, . . .) = (a2, a3, . . .) = a(a, a2, . . .), so every a ∈ F
is an eigenvalue.

9. Assume that T has k+ 2 distinct eigenvalues λ1, . . . , λk+2 with corresponding eiven-
vectors v1, . . . , vk+2. By theorem 5.6 these eigenvectors are linearly independent. Now
Tvi = λivi and dim span(Tv1, . . . , T vk+2) = dim span(λ1v1, . . . , λk+2vk+2) ≥ k + 1
(it’s k + 2 if all λi are non-zero, otherwise k + 1). This is a contradiction as
dim rangeT = k and span(λ1v1, . . . , λk+2vk+2) ⊂ rangeT .

10. As T = (T−1)−1 we only need to show this in one direction. If T is invertible, then
0 is not an eigenvalue. Now let λ be an eigenvalue of T and v the corresponding
eigenvector. From Tv = λv we get that T−1λv = λT−1v = v, so that T−1v = λ−1v.

11. Let λ be an eigenvalue of TS and v the corresponding eigenvector. Then we get
STSv = Sλv = λSv, so if Sv 6= 0, then it is is an eigenvector for the eigenvalue λ. If
Sv = 0, then TSv = 0, so λ = 0. As Sv = 0 we know that S is not injective, so ST
is not injective and it has eigenvalue 0. Thus if λ is an eigenvalue of TS, then it’s an
eigenvalue of ST . The other implication follows by symmetry.
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12. Let (v1, . . . , vn) be a basis of V . By assumption (Tv1, . . . , T vn) = (λ1v, . . . , λnvn).
We need to show that λi = λj for all i, j. Choose i 6= j, then by our assumption
vi + vj is an eigenvector, so T (vi + vj) = λivi + λjvj = λ(vi + vj) = λvi + λvj . This
means that (λi − λ)vi + (λj − λ)vj = 0. Because (vi, vj) is linearly independent we
get that λi − λ = 0 = λj − λ i.e. λi = λj .

13. Let v1 ∈ V and extend it to a basis (v1, . . . , vn) of V . Now Tv1 = a1v1 + . . .+ anvn.
Let Ui be the subspace generated by the vectors vj , j 6= i. By our assumption each
Ui is an invariant subspace. Let Tv1 = a1v1 + . . .+ anvn. Now v1 ∈ Ui for i > 1. So
let j > 1, then Tv ∈ Uj imples aj = 0. Thus Tv1 = a1v1. We see that v1 was an
eigenvector. The result now follows from the previous exercise.

14. Clearly (STS−1)n = STnS−1, so

n∑
i=0

ai(STS−1)i =
n∑
i=0

aiST
iS−1 = S

(
n∑
i=0

aiT
i

)
S−1.

15. Let λ be an eigenvalue of T and v ∈ V a corresponding eigenvector. Let p(x) =∑n
i=0 aix

i. Then we have

p(T )v =
n∑
i=0

aiT
iv =

n∑
i=0

aiλ
iv = p(λ)v.

Thus p(λ) is an eigenvalue of p(T ). Then let a be an eigenvalue of p(T ) and v ∈ V
the corresponding eigenvector. Let q(x) = p(x)− a. By the fundamental theorem of
algebra we can write q(x) = c

∏n
i=1(x− λi). Now q(T )v = 0 and q(T ) = c

∏n
i=1(T −

λiI). As q(T ) is non-injective we have that T −λiI is non-injective for some i. Hence
λi is an eigenvalue of T . Thus we get 0 = q(λi) = p(λi)− a, so that a = p(λi).

16. Let T ∈ L(R2) be the map T (x, y) = (−y, x). On page 78 it was shown that it has
no eigenvalue. However, T 2(x, y) = T (−y, x) = (−x,−y), so −1 it has an eigenvalue.

17. By theorem 5.13 T has an upper-triangular matrix with respect to some basis (v1, . . . , vn).
The claim now follows from proposition 5.12.

18. Let T ∈ L(F2) be the operator T (a, b) = (b, a) with respect to the standard basis.
Now T 2 = I, so T is clearly invertible. However, T has the matrix[

0 1
1 0

]
.
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19. Take the operator T in exercise 7. It is clearly not invertible, but has the matrix 1 · · · 1
...

. . .
...

1 · · · 1

 .
20. By theorem 5.6 we can choose basis (v1, . . . , vn) for V where vi is an eigenvector of

T corresponding to the eigenvalue λi. Let λ be the eigenvalue of S corresponding to
vi. Then we get

STvi = Sλivi = λiSvi = λiλvi = λλivi = λTvi = Tλvi = TSvi,

so ST and TS agree on a basis of V . Hence they are equal.

21. Clearly 0 is an eigenvalue and the corresponding eigenvectors are nullT = W \ {0}.
Now assume λ 6= 0 is an eigenvalue and v = u + w is a corresponding eigenvector.
Then PU,W (u+ w) = u = λu+ λw ⇔ (1− λ)u = λw. Thus λw ∈ U , so λw = 0, but
λ 6= 0, so we have w = 0 which implies (1− λ)u = 0. Because v is an eigenvector we
have v = u + w = u 6= 0, so that 1 − λ = 0. Hence λ = 1. As we can choose freely
our u ∈ U , so that it’s non-zero we see that the eigenvectors corresponding to 1 are
u = U \ {0}.

22. As dimV = dim nullP + dim rangeP , it’s clearly sufficient to prove that nullP ∩
rangeP = {0}. Let v ∈ nullP ∩ rangeP . As v ∈ rangeP , we can find a u ∈ V such
that Pu = v. Thus we have that v = Pu = P 2u = Pv, but v ∈ nullP , so Pv = 0.
Thus v = 0.

23. Let T (a, b, c, d) = (−b, a,−d, c), then T is clearly injective, so 0 is not an eigenvalue.
If λ 6= 0 is an eigenvalue and λ(a, b, c, d) = (−b, a,−d, c). We clearly see that a 6=
0 ⇔ b 6= 0 and similarly with c, d. By symmetry we can assume that a 6= 0 (an
eigenvector is non-zero). Then we have λa = −b and λb = a. Substituting we get
λ2b = −b ⇔ (λ2 + 1)b = 0. As b 6= 0 we have λ2 + 1 = 0, but this equation has no
solutions in R. Hence T has no eigenvalue.

24. If U is an invariant subspace of odd degree, then by theorem 5.26 T|U has an eigenvalue
λ with eigenvector v. Then λ is an eigenvalue of T with eigenvector v against our
assumption. Thus T has no subspace of odd degree.

6 Inner-Product Spaces

1. From the law of cosines we get ‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ. Solving we
get

‖x‖‖y‖ cos θ =
‖x‖2 + ‖y‖2 − ‖x− y‖2

2
.
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Now let x = (x1, x2), y = (y1, y2). A straight calculation shows that

‖x‖2 + ‖y‖2−‖x− y‖2 = x2
1 +x2

2 + y2
1 + y2

2 − (x1− y1)2− (x2− y2)2 = 2(x1y1 +x2y2),

so that

‖x‖‖y‖ cos θ =
‖x‖2 + ‖y‖2 − ‖x− y‖2

2
=

2(x1y1 + x2y2)
2

= 〈x, y〉 .

2. If 〈u, v〉 = 0, then 〈u, av〉 = 0, so by the Pythagorean theorem ‖u‖ ≤ ‖u‖ + ‖av‖ =
‖u+av‖. Then assume that ‖u‖ ≤ ‖u+av‖ for all a ∈ F. We have ‖u‖2 ≤ ‖u+av‖2 ⇔
〈u, u〉 ≤ 〈u+ av, u+ av〉. Thus we get

〈u, u〉 ≤ 〈u, u〉+ 〈u, av〉+ 〈av, u〉+ 〈av, av〉 ,

so that
−2Re a 〈u, v〉 ≤ |a|2‖v‖2.

Choose a = −t 〈u, v〉 with t > 0, so that

2t 〈u, v〉2 ≤ t2 〈u, v〉2 ‖v‖2 ⇔ 2 〈u, v〉2 ≤ t 〈u, v〉2 ‖v‖2.

If v = 0, then clearly 〈u, v〉 = 0. If not choose t = 1/‖v‖2, so that we get

2 〈u, v〉2 ≤ 〈u, v〉2 .

Thus 〈u, v〉 = 0.

3. Let a = (a1,
√

2a2, . . . ,
√
nan) ∈ Rn and b = (b1, b2/

√
2, . . . , bn/

√
n) ∈ Rn. This

equality is then simply 〈a, b〉2 ≤ ‖a‖2‖b‖2 which follows directly from the Cauchy-
Schwarz inequality.

4. From the parallelogram equality we have ‖u + v‖2 + ‖u − v‖2 = 2(‖u‖2 + ‖v‖2).
Solving for ‖v‖ we get ‖v‖ =

√
17.

5. Set e.g. u = (1, 0), v = (0, 1). Then ‖u‖ = 1, ‖v‖ = 1, ‖u + v‖ = 2, ‖u − v‖ = 2.
Assuming that the norm is induced by an inner-product, we would have by the
parallelogram inequality

8 = 22 + 22 = 2(12 + 12) = 4,

which is clearly false.

6. Just use ‖u‖ = 〈u, u〉 and simplify.

7. See previous exercise.
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8. This exercise is a lot trickier than it might seem. I’ll prove it for R, the proof for C
is almost identical except for the calculations that are longer and more tedious. All
norms on a finite-dimensional real vector space are equivalent. This gives us

lim
n→∞

‖rnx+ y‖ = ‖λx+ y‖

when rn → λ. This probably doesn’t make any sense, so check a book on topology
or functional analysis or just assume the result.

Define 〈u, v〉 by

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2

4
.

Trivially we have ‖u‖2 = 〈u, u〉, so positivity definiteness follows. Now

4(〈u+ v, w〉 − 〈u,w〉 − 〈v, w〉) = ‖u+ v + w‖2 − ‖u+ v − w‖2

−(‖u+ w‖2 − ‖u− w‖2)
−(‖v + w‖2 − ‖v − w‖2)

= ‖u+ v + w‖2 − ‖u+ v − w‖2

+(‖u− w‖2 + ‖v − w‖2)
−(‖u+ w‖2 + ‖v + w‖2)

We can apply the parallelogram equality to the two parenthesis getting

4(〈u+ v, w〉 − 〈u,w〉 − 〈v, w〉) = ‖u+ v + w‖2 − ‖u+ v − w‖2

+
1
2

(‖u+ w − 2w‖2 + |u− v|2)

− 1
2

(‖u+ v + 2w‖2 + ‖u− v‖2)

= ‖u+ v + w‖2 − ‖u+ v − w‖2

+
1
2
‖u+ w − 2w‖2 − 1

2
‖u+ v + 2w‖2

= (‖u+ v + w‖2 + ‖w‖2) +
1
2
‖u+ v − 2w‖2

− (‖u+ v − w‖2 + ‖w‖2)− 1
2
‖u+ v + 2w‖2

Applying the parallelogram equality to the two parenthesis we and simplifying we
are left with 0. Hence we get additivity in the first slot. It’s easy to see that
〈−u, v〉 = −〈u, v〉, so we get 〈nu, v〉 = n 〈u, v〉 for all n ∈ Z. Now we get

〈u, v〉 = 〈nu/n, v〉 = n 〈u/n, v〉 ,

13



so that 〈u/n, v〉 = 1/n 〈u, v〉. Thus we have 〈nu/m, v〉 = n/m 〈u, v〉. It follows that
we have homogeneity in the first slot when the scalar is rational. Now let λ ∈ R and
choose a sequence (rn) of rational numbers such that rn → λ. This gives us

λ 〈u, v〉 = lim
n→∞

rn 〈u, v〉 = lim
n→∞

〈rnu, v〉

= lim
n→∞

1
4

(‖rnu+ v‖2 − ‖rnu− v‖2)

=
1
4

(‖λu+ v‖2 − ‖λu− v‖2)

= 〈λu, v〉

Thus we have homogeneity in the first slot. We trivially also have symmetry, so we
have an inner-product. The proof for F = C can be done by defining the inner-product
from the complex polarizing identity. And by using the identities

〈u, v〉0 =
1
4

(‖u+ v‖2 − ‖u− v‖2)⇒ 〈u, v〉 = 〈u, v〉0 + 〈u, iv〉0 i.

and using the properties just proved for 〈·, ·〉0.

9. This is really an exercise in calculus. We have integrals of the types

〈sinnx, sinmx〉 =
∫ π

−π
sinnx sinmxdx

〈cosnx, cosmx〉 =
∫ π

−π
cosnx cosmxdx

〈sinnx, cosmx〉 =
∫ π

−π
sinnx cosmxdx

and they can be evaluated using the trigonometric identities

sinnx sinmx =
cos((n−m)x)− cos((n+m)x)

2

cosnx cosmx =
cos((n−m)x) + cos((n+m)x)

2

cosnx sinmx =
sin((n−m)x)− sin((n+m)x)

2
.

10. e1 = 1, then e2 = x−〈x,1〉1
‖x−〈x,1〉1‖ . Where

〈x, 1〉 =
∫ 1

0
x = 1/2,

14



so that

‖x− 1/2‖ = 〈x− 1/2, x− 1/2〉 =

√∫ 1

0
(x− 1/2)2dx =

√
1/12,

which gives e2 =
√

12(x − 1/2) =
√

3(2x − 1). Then to continue pencil pushing we
have 〈

x2, 1
〉

= 1/3,
〈
x2,
√

3(2x− 1)
〉

=
√

3/6,

so that x2 −
〈
x2, 1

〉
1−

〈
x2,
√

3(2x− 1)
〉√

3(2x− 1) = x2 − 1/3− 1/2(2x− 1). Now

‖x2 − 1/3− 1/2(2x− 1)‖ = 1/(6
√

5)

giving e3 =
√

5(6x2−6x+1). The orthonormal basis is thus (1,
√

3(2x−1),
√

5(6x2−
6x+ 1).

11. Let (v1, . . . , vn) be a linearly dependent list. We can assume that (v1, . . . , vn−1) is
linearly independent and vn ∈ span(v1, . . . , vn). Let P denote the projection on the
subspace spanned by (v1, . . . , vn−1). Then calculating en with the Gram-Schmidt
algorithm gives us

en =
vn − P (vn)
‖vn − Pvn‖

,

but vn = Pvn by our assumption, so en = 0. Thus the resulting list will simply
contain zero vectors. It’s easy to see that we can extend the algorithm to work for
linearly dependent lists by tossing away resulting zero vectors.

12. Let (e1, . . . , en−1) be an orthogonal list of vectors. Assume that (e1, . . . , en) and
(e1, . . . , en−1, e

′
n) are orthogonal and span the same subspace. Then we can write

e′n = a1e1 + . . . + anen. Now we have 〈e′n, ei〉 = 0 for all i < n, so that ai = 0 for
i < n. Thus we have e′n = anen and from ‖e′n‖ = 1 we have an = ±1.

Let (e1, . . . , en) be the orthonormal base produced from (v1, . . . , vn) by Gram-Schmidt.
Then if (e′1, . . . , e

′
n) satisfies the hypothesis from the problem we have by the previous

paragraph that e′i = ±ei. Thus we have 2n possible such orthonormal lists.

13. Extend (e1, . . . , em) to a basis (e1, . . . , en) of V . By theorem 6.17

v = 〈v, e1〉 e1 + . . .+ 〈v, en〉 en,

so that

‖v‖ = ‖ 〈v, e1〉 e1 + . . .+ 〈v, em〉 en‖
= ‖ 〈v, e1〉 e1‖+ . . .+ ‖ 〈v, em〉 en‖
= | 〈v, e1〉 |+ . . .+ | 〈v, en〉 |.

Thus we have ‖v‖ = | 〈v, e1〉 |+ . . .+ | 〈v, em〉 | if and only if 〈v, ei〉 = 0 for i > m i.e.
v ∈ span(e1, . . . , em).
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14. It’s easy to see that the differentiation operator has a upper-triangular matrix in the
orthonormal basis calculated in exercise 10.

15. This follows directly from V = U ⊕ U⊥.

16. This follows directly from the previous exercise.

17. From exercise 5.21 we have that V = rangeP ⊕ nullP . Let U := rangeP , then by
assumption nullP ⊂ U⊥. From exercise 15, we have dimU = dimV − dimU =
dim nullP , so that nullP = U⊥. An arbitrary v ∈ V can be written as v = Pv+(v−
Pv). From P 2 = P we have that P (v − Pv) = 0, so v − Pv ∈ nullP = U⊥. Hence
the decomposition v = Pv + (v − Pv) is the unique decomposition in U ⊕ U⊥. Now
Pv = P (Pv+ (v−Pv)) = Pv, so that P is the identity on U . By definition P = PU .

18. Let u ∈ rangeP , then u = Pv for some v ∈ V hence Pu = P 2v = Pv = u, so P is
the identity on rangeP . Let w ∈ nullP . Then for a ∈ F

‖u‖2 = ‖P (u+ aw)‖2 ≤ ‖u+ aw‖2.

By exercise 2 we have 〈u,w〉 = 0. Thus nullP ⊂ (rangeP )⊥ and from the dimension
equality nullP = (rangeP )⊥. Hence the claim follows.

19. If TPU = PUTPU clearly U is invariant. Now assume that U is invariant. Then for
u ∈ U we have PUTPUu = PUTu = Tu = TPUu.

20. Let u ∈ U , then we have Tu = TPUu = PUTu ∈ U . Thus U is invariant. Then let
w ∈ U⊥. Now we can write Tw = u+u′ where u ∈ U and u′ ∈ U⊥. Now PUTw = u,
but u = PUTw = TPUw = T0 = 0, so Tw ∈ U⊥. Thus U⊥ is also invariant.

21. First we need to find an orthonormal basis for U . With Gram-Schmidt we get e1 =
(1/
√

2, 1/
√

2, 0, 0), e2 = (0, 0, 1/
√

5, 2/
√

5). Let U = span(e1, e2). Then we have

u = PU (1, 2, 3, 4) = 〈(1, 2, 3, 4), e1〉 e1 + 〈(1, 2, 3, 4), e2〉 e2 = (3/2, 3/2, 11/5, 22/5).

22. If p(0) = 0 and p′(0) = 0, then p(x) = ax2 + bx3. Thus we want to find the
projection of 2 + 3x to the subspace U := span(x2, x3). With Gram-Schmidt we get
the orthonormal basis (

√
3x2,

√
420/11(x3 − 1

2x
2)). We get

PU (2+3x) =
〈

2 + 3x,
√

3x2
〉√

3x2+
〈

2 + 3x,
√

420/11(x3 − 1
2
x2)
〉√

420/11(x3−1
2
x2).

Here 〈
2 + 3x,

√
3x2
〉

=
17
12

√
3,
〈

2 + 3x,
√

420/11(x3 − 1
2
x2)
〉

=
47
660

√
1155,

so that
PU (2 + 3x) = −71

22
x2 +

329
22

x3.
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23. There’s is nothing special with this exercise, compared to the previous two, except
that it takes ages to calculate.

24. We see that the map T : P2(R) → R defined by p 7→ p(1/2) is linear. From exercise
10 we get that (1,

√
3(2x − 1),

√
5(6x2 − 6x + 1) is an orthonormal basis for P2(R).

From theorem 6.45 we see that

q(x) = 1 +
√

3(2 · 1/2− 1)
√

3(2x− 1) +
√

5(6 · (1/2)2 − 6 · 1/2 + 1)
√

5(6x2 − 6x+ 1)
= −3/2 + 15x− 15x2.

25. The map T : P2(R) → R defined by p 7→
∫ 1
0 p(x) cos(πx)dx is clearly linear. Again

we have the orthonormal basis (1,
√

3(2x− 1),
√

5(6x2 − 6x+ 1), so that

q(x) =
∫ 1

0
cos(πx)dx+

∫ 1

0

√
3(2x− 1) cos(πx)dx×

√
3(2x− 1)

+
∫ 1

0

√
5(6x2 − 6x+ 1) cos(πx)dx×

√
5(6x2 − 6x+ 1)

= 0− 4
√

3
π2

√
3(2x− 1) + 0 = −12

π2
(2x− 1).

26. Choose an orthonormal basis (e1, . . . , en) for V and let F have the usual basis. Then
by proposition 6.47 we have

M(T, (e1, . . . , en)) = [〈e1, v〉 · · · 〈en, v〉] ,

so that

M(T ∗, (e1, . . . , en)) =

 〈e1, v〉...
〈en, v〉


and finally T ∗a = (a〈e1, v〉, . . . , a〈en, v〉).

27. with the usual basis for Fn we get

M(T ) =


0 1 0

. . . . . .
. . . 1

0 0


so by proposition 6.47

M(T ∗) =


0 0

1
. . .
. . . . . .

0 1 0

 .

17



Clearly T ∗(z1, . . . , zn) = (z2, . . . , zn, 0).

28. By additivity and conjugate homogeneity we have (T−λI)∗ = T ∗−λI. From exercise
31 we see that T ∗− λI is non-injective if and only if T − λI is non-injective. That is
λ is an eigenvalue of T ∗ if and only if λ is an eigenvalue of T .

29. As (U⊥)⊥ = U and (T ∗)∗ = T it’s enough to show only one of the implications. Let
U be invariant under T and choose w ∈ U⊥. Now we can write T ∗w = u+ v, where
u ∈ U and v ∈ U⊥, so that

0 = 〈Tu,w〉 = 〈u, T ∗w〉 = 〈u, u+ v〉 = 〈u, u〉 = ‖u‖2.

Thus u = 0 which completes the proof.

30. As (T ∗)∗ = T it’s sufficient to prove the first part. Assume that T is injective, then
by exercise 31 we have

dimV = dim rangeT = dim rangeT ∗,

but rangeT is a subspace of V , so that rangeT = V .

31. From proposition 6.46 and exercise 15 we get

dim nullT = dim(rangeT )⊥ = dimW − dim rangeT
= dim nullT + dimW − dimV.

For the second part we have

dim rangeT ∗ = dimW − dim nullT ∗

= dimV − dim nullT
= dim rangeT,

where the second equality follows from the first part.

32. Let T be the operator induced by A. The columns are the images of the basis vectors
under T , so the generate rangeT . Hence the dimension of the span of the column
vectors equal dim rangeT . By proposition 6.47 the span of the row vectors equals
rangeT ∗. By the previous exercise dim rangeT = dim rangeT ∗, so the claim follows.

7 Operators on Inner-Product Spaces

1. For the first part, let p(x) = x and q(x) = 1. Then clearly 1/2 = 〈Tp, q〉 6= 〈p, Tq〉 =
〈p, 0〉 = 0. For the second part it’s not a contradiction since the basis is not orthog-
onal.
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2. Choose the standard basis for R2. Let T and S the the operators defined by the
matrices [

0 1
1 0

]
,

[
0 0
0 1

]
.

Then T and S as clearly self-adjoint, but TS has the matrix[
0 1
0 0

]
.

so TS is not self-adjoint.

3. If T and S are self-adjoint, then (aT+bS)∗ = (aT )∗+(bS)∗ = aT+bS for any a, b ∈ R,
so self-adjoint operators form a subspace. The identity operator I is self-adjoint, but
clearly (iI)∗ = −iI, so iI is not self-adjoint.

4. Assume that P is self-adjoint. Then from proposition 6.46 we have nullP = nullP ∗ =
(rangeP )⊥. Now P is clearly a projection to rangeP . Then assume that P is a
projection. Let (u1, . . . , un) an orthogonal basis for rangeP and extend it to a basis
of V . Then clearly P has a diagonal matrix with respect to this basis, so P is
self-adjoint.

5. Choose the operators corresponding to the matrices

A =
[

0 −1
1 0

]
, B =

[
1 1
1 0

]
.

Then we easily see that A∗A = AA∗ and B∗B = BB∗. However, A + B doesn’t
define a normal operator which is easy to check.

6. From proposition 7.6 we get nullT = nullT ∗. It follows from proposition 6.46 that

rangeT = (nullT ∗)⊥ = (nullT )⊥ = rangeT ∗.

7. Clearly nullT ⊂ nullT k. Let v ∈ nullT k. Then we have〈
T ∗T k−1v, T ∗T k−1v

〉
=
〈
T ∗T kv, T k−1v

〉
= 0,

so that T ∗T k−1v = 0. Now〈
T k−1v, T k−1v

〉
=
〈
T ∗T k−1v, T k−2v

〉
= 0,

so that v ∈ nullT k−1. Thus nullT k ⊂ nullT k−1 and continuing we get nullT k ⊂
nullT .

Now let u ∈ rangeT k, then we can find a v ∈ V such that u = T kv = T (T k−1v), so
that rangeT k ⊂ rangeT . From the first part we get dim rangeT k = dim rangeT , so
rangeT k = rangeT .
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8. The vectors u = (1, 2, 3) and v = (2, 5, 7) are both eigenvectors corresponding to
different eigenvalues. A self-adjoint operator is normal, so by corollary 7.8 if T is
normal that would imply orthogonality of u and v. Clearly 〈u, v〉 6= 0, so T can’t be
even normal much less self-adjoint.

9. If T is normal, we can choose a basis of V consisting of eigenvectors of T . Let A be
the matrix of T corresponding to the basis. Now T is self-adjoint if and only if the
conjugate transpose of A equals A that is the eigenvalues of T are real.

10. For any v ∈ V we get 0 = T 9v − T 8v = T 8(Tv − v). Thus Tv − v ∈ nullT 8 = nullT
by the normality of T . Hence T (Tv−v) = T 2v−Tv = 0, so T 2 = T . By the spectral
theorem we can choose a basis of eigenvectors for T such that T has a diagonal matrix
with λ1, . . . , λn on the diagonal. Now T 2 has the diagonal matrix with λ2

1, . . . , λ
2
n on

the diagonal and from T 2 = T we must have λ2
i = λi for all i. Hence λi = 0 or λi = 1,

so the matrix of T equals its conjugate transpose. Hence T is self-adjoint.

11. By the spectral theorem we can choose a basis of T such that the matrix of T
corresponding to the basis is a diagonal matrix. Let λ1, . . . , λn be the diagonal
elements. Let S be the operator corresponding to the diagonal matrix having the
elements

√
λ1, . . . ,

√
λn on the diagonal. Clearly S2 = T .

12. Let T the operator corresponding to the matrix
[

0 −1
1 0

]
. Then

T 2 + I = 0.

13. By the spectral theorem we can choose a basis consisting of eigenvectors of T . Then
T has a diagonal matrix with respect to the basis. Let λ1, . . . , λn be the diago-
nal elements. Let S be the operator corresponding to the diagonal matrix having
3
√
λ1, . . . ,

3
√
λn on the diagonal. Then clearly S3 = T .

14. By the spectral theorem we can choose a basis (v1, . . . , vn) consisting of eigenvectors
of T . Let v ∈ V be such that ‖v‖ = 1. If v = a1v1 + . . . + anvn this implies that∑n

i=1 |ai| = 1. Assume that ‖Tv − λv‖ < ε. If |λi − λ| ≥ ε for all i, then

‖Tv − λv‖ = ‖
n∑
i=1

(aiTvi − λvi)‖ = ‖
n∑
i=1

(aiλivi − λvi)‖

= ‖
n∑
i=1

ai(λi − λ)vi‖ =
n∑
i=1

|ai||λi − λ|‖v1‖

=
n∑
i=1

|ai||λi − λ| ≥ ε
n∑
i=1

|ai| = ε,

which is a contradiction. Thus we can find an eigenvalue λi such that |λ− λi| < ε.
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15. If such an inner-product exists we have a basis consisting of eigenvectors by the
spectral theorem. Assume then that (v1, . . . , vn) is basis such that the matrix of T
is a matrix consisting of eigenvectors of T . Define an inner-product by

〈vi, vj〉 =
{

0, i 6= j
1, i = j

.

Extend this to an inner-product by bilinearity and homogeneity. Then we have an
inner-product and clearly T is self-adjoint as (v1, . . . , vn) is an orthonormal basis of
U .

16. Let T ∈ L(R2) be the operator T (a, b) = (a, a + b). Then span((1, 0)) is invariant
under T , but it’s orthogonal complement span((0, 1)) is clearly not.

17. Let T, S be two positive operators. Then they are self-adjoint and (S + T )∗ =
S∗+ T ∗ = S + T , so S + T is self-adjoint. Also 〈(S + T )v, v〉 = 〈Sv, v〉+ 〈Tv, v〉 ≥ 0.
Thus, S + T is positive.

18. Clearly T k is self-adjoint for every positive integer. For k = 2 we have
〈
T 2v, v

〉
=

〈Tv, Tv〉 ≥ 0. Assume that the result is true for all positive k < n and n ≥ 2. Then

〈Tnv, v〉 =
〈
Tn−2Tv, Tv

〉
≥ 0,

by hypothesis and self-adjointness. Hence the result follows by induction.

19. Clearly 〈Tv, v〉 > 0 for all v ∈ V \ {0} implies that T is injective hence invertible.
So assume that T is invertible. Since T is self-adjoint we can choose an orthonormal
basis (v1, . . . , vn) of eigenvectors such that T has a diagonal matrix with respect to
the basis. Let the elements on the diagonal be λ1, . . . , λn and by assumption λi > 0
for all i. Let v = a1v1 + . . .+ anvn ∈ V \ {0}, so that

〈Tv, v〉 = |a1|2λ1 + . . .+ |an|2λn > 0.

20.
[

sin θ cos θ
cos θ − sin θ

]
is a square root for every θ ∈ R, which shows that it has infinitely

many square roots.

21. Let S ∈ L(R2) be defined by S(a, b) = (a+ b, 0). Then ‖S(1, 0)‖ = ‖(1, 0)‖ = 1 and
‖S(0, 1)‖ = 1, but S is clearly not an isometry.

22. R3 is an odd-dimensional real vector space. Hence S has an eigenvalue λ and a
corresponding eigenvector v. Since ‖Sv‖ = |λ|‖v‖ = ‖v‖ we have λ2 = 1. Hence
S2v = λ2v = v.
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23. The matrices corresponding to T and T ∗ are

M(T ) =

 0 0 1
2 0 0
0 3 0

 , M(T ∗) =

 0 2 0
0 0 3
1 0 0

 .
Thus we get

M(T ∗T ) =

 4 0 0
0 9 0
0 0 1

 ,
so that T ∗T is the operator (z1, z2, z3) 7→ (4z1, 9z2, z3). Hence

√
T ∗T (z1, z2, z3) =

(2z1, 3z2, z3). Now we just need to permute the indices which corresponds to the
isometry S(z1, z2, z3) = (z3, z1, z2).

24. Clearly T ∗T is positive, so by proposition 7.26 it has a unique positive square root.
Thus it’s sufficient to show that R2 = T ∗T . Now we have T ∗ = (SR)∗ = R∗S∗ = RS∗

by self-adjointness of R. Thus R2 = RIR = RS∗SR = T ∗T .

25. Assume that T is invertible. Then
√
T ∗T must be invertible (polar decomposition).

Hence S = T
√
T ∗T

−1
, so S is uniquely determined. Now assume that T is not

invertible. Then range
√
T ∗T is not invertible (hence not surjective).

Now assume that T is not invertible, so that
√
T ∗T is not invertible. By the spectral

theorem we can choose a basis (v1, . . . , vn) of eigenvectors of
√
T ∗T and we can

assume that v1 corresponds to the eigenvalue 0. Now let T = S
√
T ∗T . Define U

by Uv1 = −Sv1, Uvi = Svi, i > 1. Clearly U 6= S and T = U
√
T ∗T . Now choose

u, v ∈ V . Then it’s easy to verify that 〈Uu,Uv〉 = 〈Su, Sv〉 = 〈u, v〉, so U is an
isometry.

26. Choose a basis of eigenvectors for T such that T has a diagonal matrix with eigenval-
ues λ1, . . . , λn on the diagonal. Now T ∗T = T 2 corresponds to the diagonal matrix
with λ2

1, . . . , λ
2
n on the diagonal and the square root

√
T ∗T corresponds to the diag-

onal matrix having |λ1|, . . . , |λn| on the diagonal. These are the singular values, so
the claim follows.

27. Let T ∈ L(R2) be the map T (a, b) = (0, a). Then from the matrix representation
we see that T ∗T (a, 0) = (a, 0), hence

√
T ∗T = T ∗T and 1 is clearly a singular value.

However, T 2 = 0, so
√

(T 2)∗T 2 = 0, so 12 = 1 is not a singular value of T 2.

28. The composition of two bijections is a bijection. If T=S
√
T ∗T , then since S is an

isometry we have that T is bijective hence invertible if and only if
√
T ∗T is bijective.

But
√
T ∗T is injective hence bijective if and only if 0 is not an eigenvalue. Thus T is

bijective if and only if 0 is not a singular value.
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29. From the polar decomposition theorem we see that dim rangeT = dim range
√
T ∗T .

Since
√
T ∗T is self-adjoint we can choose a basis of eigenvectors of

√
T ∗T such that

the matrix of
√
T ∗T is a diagonal matrix. Clearly dim range

√
T ∗T equals the number

of non-zero elements on the diagonal i.e. the number of non-zero singular values.

30. If S is an isometry, then clearly
√
S∗S = I, so all singular values are 1. Now assume

that all singular values are 1. Then
√
S∗S is a self-adjoint (positive) operator with

all eigenvalues equal to 1. By the spectral theorem we can choose a basis of V such
that

√
S∗S has a diagonal matrix. As all eigenvalues are one, this means that the

matrix of
√
S∗S is the identity matrix. Thus

√
S∗S = I, so S is an isometry.

31. Let T1 = S1

√
T ∗1 T1 and T2 = S2

√
T ∗2 T2. Assume that T1 and T2 have the same

singular values s1, . . . , sn. Then we can choose bases of eigenvectors of
√
T ∗1 T1 and√

T ∗2 T2 such that they have the same matrix. Let these bases be (v1, . . . , vn) and
(w1, . . . , wn). Let S the operator defined by S(wi) = vi, then clearly S is an isometry
and

√
T ∗2 T2 = S−1

√
T ∗1 T1S. Thus we get T2 = S2

√
T ∗2 T2 = S2S

−1
√
T ∗1 T1S. Writing

S3 = S2S
−1S−1

1 , which is clearly an isometry, we get

T2 = S3S1

√
T ∗1 T1S = S3T1S.

Now let T2 = S1T1S2. Then we have T ∗2 T2 = (S1T1S2)∗(S1T1S2) = S∗1T
∗
1 T1S1 =

S−1
1 T ∗1 T1S1. Let λ be an eigenvalue of T ∗1 T1 and v a corresponding eigenvector.

Because S1 is bijective we have a u ∈ V such that v = S1u. This gives us

T ∗2 T2u = S−1
1 T ∗1 T1S1u = S−1

1 T ∗1 T1v = S−1
1 λv = λu,

so that λ is an eigenvalue of T ∗2 T2. Let (v1, . . . , vn) be an orthonormal basis of eigen-
vectors of T ∗1 T1, then (S−1

1 v1, . . . , S
−1vn) is an orthonormal basis for V of eigenvectors

of T ∗2 T2. Hence T ∗2 T2 and T ∗1 T1 have the same eigenvalues. The singular values are
simply the positive square roots of these eigenvalues, so the claim follows.

32. For the first part, denote by S the map defined by the formula. Set

A :=M(S, (f1, . . . , fn), (e1, . . . , en)), B :=M(T, (e1, . . . , en), (f1, . . . , fn)).

Clearly A = B and is a diagonal matrix with s1, . . . , sn on the diagonal. All the si
are positive real numberse, so that B∗ = B = A. It follows from proposition 6.47
that S = T ∗.

For the second part observe that a linear map S defined by the formula maps fi
to s−1

i ei which is mapped by T to fi. Thus TS = I. The claim now follows from
exercise 3.23.
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33. By definition
√
T ∗T is positive. Thus all singular values of T are positive. From the

singular value decomposition theorem we can choose bases of V such that

‖Tv‖ = ‖
n∑
i=1

si 〈v, ei〉 fi‖ =
n∑
i=1

si| 〈v, ei〉 |

since all si are positive. Now clearly

ŝ‖v‖ = ŝ
n∑
i=1

| 〈v, ei〉 | ≤
n∑
i=1

si| 〈v, ei〉 | = ‖Tv‖

and similarly for s‖v‖.

34. From the triangle equality and the previous exercise we get

‖(T ′ + T ′′)v‖ ≤ ‖T ′v‖+ ‖T ′′v‖ ≤ (s′ + s′′)‖v‖.

Now let v be the eigenvector of
√

(T ′ + T ′′)∗(T ′ + T ′′) corresponding to the singular
value s. Let T + T ′′ = S

√
(T ′ + T ′′)∗(T ′ + T ′′), so that

‖(T ′ + T ′′)v‖ = ‖S
√

(T ′ + T ′′)∗(T ′ + T ′′)v‖ = ‖Ssv‖ = s‖v‖ ≤ (s′ + s′′)‖v‖,

so that s ≤ s′ + s′′.

8 Operators on Complex Vector Spaces

1. T is not injective, so 0 is an eigenvalue of T . We see that T 2 = 0, so that any v ∈ V
is a generalized eigenvector corresponding to the eigenvalue 0.

2. On page 78 it’s shown that ±i are the eigenvalues of T . We have dim null(T − iI)2 +
dim null(T + iI)2 = dim C2 = 2, so that dim null(T − iI)2 = dim null(T + iI)2 = 1.
Because (1,−i) is an eigenvector corresponding to the eigenvalue i and (1, i) is an
eigenvector corresponding to the eigenvalue −i. The set of all generalized eigenvectors
are simply the spans of these corresponding eigenvectors.

3. Let
∑m−1

i=0 aiT
iv = 0, then 0 = Tm−1(

∑m−1
i=0 aiT

iv = a0T
m−1v, so that a0 = 0. Ap-

plying repeatedly Tm−i for i = 2, . . . we see that ai = 0 for all i. Hence (v, . . . , Tm−1v)
is linearly independent.

4. We see that T 3 = 0, but T 2 6= 0. Assume that S is a square root of T , then S
is nilpotent, so by corollary 8.8 we have SdimV = S3 = 0, so that 0 = S4 = T 2.
Contradiction.

5. If ST is nilpotent, then ∃n ∈ N such that (ST )n = 0, so (TS)n+1 = T (ST )nS = 0.
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6. Assume that λ 6= 0 is an eigenvalue of N with corresponding eigenvector v. Then
NdimV v = λdimV v 6= 0. This contradicts corollary 8.8.

7. By lemma 8.26 we can find a basis of V such that the matrix of N is upper-triangular
with zeroes on the diagonal. Now the matrix of N∗ is the conjugate transpose. Since
N∗ = N , the matrix of N must be zero, so the claim follows.

8. If NdimV−1 6= NdimV , then dim nullN i−1 < dim nullN i for all i ≤ dimV by propo-
sition 8.5. By corollary dim nullNdimV = dimV , so the claim clearly follows.

9. rangeTm = rangeTm+1 implies dim nullTm = dim nullTm+1 i.e. nullTm = nullTm+1.
From proposition 8.5 we get dim nullTm = dim nullTm+k for all k ≥ 1. Again this
implies that dim rangeTm = dim rangeTm+k for all k ≥ 1, so the claim follows.

10. Let T be the operator defined in exercise 1. Clearly nullT ∩ rangeT 6= {0}, so the
claim is false.

11. We have dimV = dim nullTn+dim rangeTn, so it’s sufficient to prove that nullTn∩
rangeTn = {0}. Let v ∈ nullTn ∩ rangeTn. Then we can find a u ∈ V such that
Tnu = v. From 0 = Tv = Tn+1u we see that u ∈ nullTn+1 = nullTn which implies
that v = Tnu = 0.

12. From theorem 8.23 we have V = nullT dimV , so that T dimV = 0. Then let T ∈ L(R3)
be the operator T (a, b, c) = (−b, a, 0). Then clearly 0 is the only eigenvalue, but T is
not nilpotent.

13. From nullTn−2 6= nullTn−1 and from proposition 8.5 we see that dim nullTn ≥ n−1.
Assume that T has three different eigenvalues 0, λ1, λ2. Then dim null (T −λiI)n ≥ 1,
so from theorem 8.23

n ≥ dim nullTn + dim null (T − λ1I)n + dim null (T − λ2I)n ≥ n− 1 + 1 + 1 = n+ 1,

which is impossible, so T has at most two different eigenvalues.

14. Let T ∈ L(C4) be defined by T (a, b, c, d) = (7a, 7b, 8c, 8d) from the matrix of T it’s
easy to see that the characteristic polynomial is (z − 7)2(z − 8)2.

15. Let d1 be the multiplicity of the eigenvalue 5 and d2 the multiplicity of the eigenvalue
6. Then d1, d2 ≥ 1 and d1 + d2 = n. It follows that d1, d2 ≤ n − 1, so that
(z − 5)d1(z − 6)d2 divides (z − 5)n−1(z − 6)n−1. By the Cayley-Hamilton theorem
(T − 5I)d1(T − 6I)d2 = 0, so that (T − 5I)n−1(T − 6I)n−1 = 0.

16. If every generalized eigenvector is an eigenvector, then by theorem 8.23 T has a basis
of eigenvectors. If there’s a generalized eigenvector that is not an eigenvector, then
we have an eigenvalue λ such that dim null(T − λI)dimV 6= dim null(T − λI). Thus if
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λ1, . . . , λm are the eigenvalues of T , then
∑m

i=1 dim null(T − λiI) < dimV , so there
doesn’t exists a basis of eigenvectors.

17. By lemma 8.26, choose a basis (v1, . . . , vn) such that N has an upper-triangular
matrix. Apply Gram-Schmidt orthogonalization to the basis. Then Ne1 = 0 and
assume that Nei ∈ span(e1, . . . , ei), so that

Nei+1 = N

(
vi+1 − 〈vi+1, e1〉 e1 − . . .− 〈vi+1, ei〉 ei
‖vi+1 − 〈vi+1, e1〉 e1 − . . .− 〈vi+1, ei〉 ei‖

)
∈ span(e1, . . . , ei+1).

Thus N has an upper-triangular matrix in the basis (e1, . . . , en).

18. Continuing in the proof of lemma 8.30 up to j = 4 we see that a4 = −5/128. So that

√
I +N = I +

1
2
N − 1

8
N2 +

1
16
N3 − 5

128
N4

19. Just replace the Taylor-polynomial in lemma 8.30 with the Taylor polynomial of
3
√

1 + x and copy the proof of the lemma and theorem 8.32.

20. Let p(x) =
∑m

i=0 aix
i be the minimal polynomial of T . If a0 6= 0, then p(x) =

x
∑m

i=1 aix
i−1. Since T is invertible we must have

∑m
i=1 aiT

i−1 = 0 which contradicts
the minimality of p. Hence a0 6= 0, so solving for I in p(T ) we get

−a−1
0 (a1 + . . .+ amT

m−1)T = I.

Hence setting q(x) = −a−1
0 (a1 + . . .+ amx

m−1) we have q(T ) = T−1.

21. The operator defined by the matrix 0 0 1
0 0 0
0 0 0


is clearly an example.

22. Choose the matrix

A =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 0

 .
It’s easy to see that A(A− I)2 = 0. Thus, the minimal polynomial divides z(z− 1)2.
However, the whole polynomial is the only factor that annihilates A, so z(z − 1)2 is
the minimal polynomial.
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23. Let λ1, . . . , λm be the eigenvalues of T with multiplicity d1, . . . , dm. Assume that V
has a basis of eigenvectors (v1, . . . , vn). Let p(z) =

∏m
i=1(z − λi). Then we get

p(T )vi =

∏
j 6=i

(T − λjI)

 (T − λiI)vi = 0,

so that the minimal polynomial divides p and hence has no double root.

Now assume that the minimal polynomial has no double roots. Let the minimal
polynomial be p and let (v1, . . . , vn) be a Jordan-basis of T . Let A be the largest
Jordan-block of T . Now clearly p(A) = 0. However, by exercise 29, the minimal
polynomial of (A − λI) is zm+1 where m is the length of the longest consecutive
string of 1’s that appear just above the diagonal, so the minimal polynomial of A
is (z − λ)m+1. Hence m = 0, so that A is a 1 × 1 matrix and the basis vector
corresponding to A is an eigenvalue. Since A was the largest Jordan-block it follows
that all basis vectors are eigenvalues (corresponding to a 1× 1 matrix).

24. If V is a complex vector space, then V has a basis of eigenvectors. Now let λ1, . . . , λm
be the distinct eigenvalues. Now clearly p =

∏m
i=1(z − λi) annihilates T , so that the

minimal polynomial being a factor of p doesn’t have a double root.

Now assume that V is a real vector space. By theorem 7.25 we can find a basis of T
such that T has a block diagonal matrix where each block is a 1× 1 or 2× 2 matrix.
Let λ1, . . . , λm be the distinct eigenvalues corresponding to the 1 × 1 blocks. Then
p(z) =

∏m
i=1(z − λi) annihilates all but the 2 × 2 blocks of the matrix. Now it’s

sufficient to show that each 2× 2 block is annihilated by a polynomial which doesn’t
have real roots.

By theorem 7.25 we can choose the 2× 2 blocks to be of the form[
a −b
b a

]
where b > 0 and it’s easy to see that[

a −b
b a

]
− 2a

[
a −b
b a

]
+ (a2 + b2)

[
1 0
0 1

]
= 0.

Clearly this polynomial has a negative discriminant, so the claim follows.

25. Let q be the minimal polynomial. Write q = sp + r, where deg r < deg p, so that
0 = q(T )v = s(T )p(T )v+ r(T )v = r(T )v. Assuming r 6= 0, we can multiply the both
sides with the inverse of the highest coefficient of r yielding a monic polynomial r2
of degree less than p such that r2(T )v = 0 contradicting the minimality of p. Hence
r = 0 and p divides q.
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26. It’s easy to see that no proper factor of z(z − 1)2(z − 3) annihilates the matrix

A =


3 1 1 1
0 1 1 0
0 0 1 0
0 0 0 0

 ,
so the it’s minimal polynomial is z(z − 1)2(z − 3) which by definition is also the
characteristic polynomial.

27. It’s easy to see that no proper factor of z(z − 1)(z − 3) annihilates the matrix

A =


3 1 1 1
0 1 1 0
0 0 1 0
0 0 0 0

 ,
but A(A− I)(A− 3I) = 0, so the claim follows.

28. We see that T (ei) = ei+1 for i < n. Hence (e1, T e1, . . . , Tn−1e1) = (e1, . . . , en) is
linearly independent. Thus for any non-zero polynomial p of degree less than n we
have p(ei) 6= 0. Hence the minimal polynomial has degree n, so that the minimal
polynomial equals the characteristic polynomial.

Now from the matrix of T we see that Tn(ei) = −a0−a1T (e1)− . . .−an−1T
n−1. Set

p(z) = a0 + a1z+ . . .+ an−1z
n−1 + zn. Now p(T )(e1) = 0, so by exercise 25 p divides

the minimal polynomial. However, the minimal polynomial is monic and has degree
n, so p is the minimal polynomial.

29. The biggest Jordan-block of N is of the form
0 1

0 1
. . . . . .

0 1
0

 .

Now clearly Nm+1 = 0, so the minimal polynomial divides zm+1. Let vi, . . . , vi+m be
the basis elements corresponding to the biggest Jordan-block. Then Nmei+m = ei 6=
0, so the minimal polynomial is zm+1.

30. Assume that V can’t be decomposed into two proper subspaces. Then T has only
one eigenvalue. If there is more than one Jordan-block, then Let (v1, . . . , vm) be
the vectors corresponding to all but the last Jordan-block and (vm+1, . . . , vn) the
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vectors corresponding to the last Jordan-block. Then clearly V = span(v1, . . . , vm)⊕
span(vm+1, . . . , vn). Thus, we have only one Jordan-block and T − λI is nilpotent
and has minimal polynomial zdimV by the previous exercise. Hence T has minimal
polynomial (z − λ)dimV .

Now assume that T has minimal polynomial (z−λ)dimV . If V = U⊕W , let p1 be the
minimal polynomial of T|U and p2 the minimal polynomial of T|W . Now (p1p2)(T ) =
0, so that (z − λ)dimV divides p1p2. Hence deg p1p2 = deg p1 + deg p2 ≥ dimV , but
deg p1 + deg p2 ≤ dimU + dimW = dimV . Thus deg p1p2 = dimV . This means that
p1(z) = (z − λ)dimU and p2(z) = (z − λ)dimW . Now if n = max{dimU,dimW} we
have (T|U − λI)n = (T|W − λI)n = 0. This means that (T − λI)n = 0 contradicting
the fact that (z − λ)dimV is the minimal polynomial.

31. Reversing the Jordan-basis simply reverses the order of the Jordan-blocks and each
block needs to be replaced by its transpose.

9 Operators on Real Vector Spaces

1. Let a be the value in the upper-left corner. Then the matrix must have the form[
a 1− a

1− a a

]

and it’s easy to see that
[

1
1

]
is an eigenvector corresponding to the eigenvalue 1.

2. The characteristic polynomial of the matrix is p(x) = (x − a)(x − d) − bc. Now the
discriminant equals (a+ d)2 − 4(ad− bc) = (a− d)2 + 4bc. Hence the characteristic
polynomial has a root if and only if (a − d)2 + 4bc ≥ 0. If p(x) = (x − λ1)(x − λ2),
then p(T ) = 0 implies that either A − λ1I or A − λ2I is not invertible hence A has
an eigenvalue. If p doesn’t have a root then assuming that Av = λv we get

0 = p(A)v = p(λ)v,

so that v = 0. Hence A has no eigenvalues. The claim follows.

3. See the proof of the next problem, though in this special case the proof is trivial.

4. First let λ be an eigenvalue of A. Assume that λ is not an eigenvalue of A1, . . . , Am,
so that Ai − λI is invertible for each i. Now let B be the matrix (A1 − λI)−1 ∗

. . .
0 (Am − λI)−1

 .
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It’s now easy to verify that B(A−λI) is a diagonal matrix with all 1s on the diagonal,
hence it’s invertible. However, this is impossible, since A− λI is not. Thus, λ is an
eigenvalue of some Ai.

Now let λ be an eigenvalue of Ai. Let T be the operator corresponding to A − λI
in L(Fn). Let Ai correspond to the columns j, . . . , j + k and let (e1, . . . , en) be the
standard basis. Let (a1, . . . , ak) be the eigenvector of Ai corresponding to λ. Set v =
a1ej + . . .+ akej+k. Then it’s easy to see that T maps the space span(e1, . . . , ej−1, v)
to the space span(e1, . . . , ej−1). Hence T is not injective, so that λ is an eigenvalue
of A.

5. The proof is identical to the argument used in the solution of exercise 2.

6. Let (v1, . . . , vn) be the basis with the respect to which T has the given matrix.
Applying Gram-Schmidt to the basis the matrix trivially has the same form.

7. Choose a basis (v1, . . . , vn) such that T has a matrix of the form in theorem 9.10.
Now if vj corresponds to the second vector in a pair corresponding to a 2× 2 matrix
or corresponds to a 1× 1 matrix, then span(v1, . . . , vj) is an invariant subscape. The
second posibility means that vj corresponds to the first vector in a pair corresponding
to a 2× 2 matrix, so that span(v1, . . . , vj+1) is an invariant subspace.

8. Assuming that such an operator existed we would have basis (v1, . . . , v7) such that
the matrix of T would have a matrix with eigenpair (1, 1)

dim null(T 2 + T + I)dimV

2
= 7/2

times on the diagonal. This would contradict theorem 9.9 as 7/2 is not a whole
number. It follows that such an operator doesn’t exist.

9. The equation x2 + x + 1 = 0 has a solution in C. Let λ be a solution. Then the
operator corresponding to the matrix λI clearly is an example.

10. Let T be the operator in L(R2k) corresponding to the block diagonal matrix where
each block has characteristic polynomial x2 + αx+ β. Then by theorem 9.9 we have

k =
dim null(T 2 + αT + βI)2k

2
,

so that dim null(T 2 + αT + βI)2k is even. However, the minimal polynomial of T
divides (T 2 + αT + βI)2k and has degree less than 2k, so that (T 2 + αT + βI)k = 0.
It follows that dim null(T 2 + αT + βI)2k = dim null(T 2 + αT + βI)k and the claim
follows.
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11. We see that (α, β) is an eigenpair and from the nilpotency of T 2 + αT + βI and
theorem 9.9 we have

dim null(T 2 + αT + βI)dimV

2
= (dimV )/2

it follows that dimV is even. For the second part we know from the Cayley-Hamilton
theorem that the minimal polynomial p(x) of T has degree less than dimV . Thus we
have p(x) = (x2 + αx + β)k and from deg p ≤ dimV we get k ≤ (dimV )/2. Hence
(T + αT + βI)(dimV )/2 = 0.

12. By theorem 9.9 we can choose a basis such that the matrix of T has the form of 9.10.
Now we have the matrices [5] and [7] at least once on the diagonal. Assuming that
T has an eigenpair we would have at least one 2× 2 matrix on the diagonal. This is
impossible as the diagonal has only length 3.

13. By proposition 8.5 dim nullTn−1 ≥ n−1. Like in the previous exercise we know that
the matrix [0] is at least n− 1 times on the diagonal and it’s impossible to fit a 2× 2
matrix in the only place left.

14. We see that A satisfies the polynomial p(z) = (z − a)(z − d) − bc no matter if F is
R or C. If F = C, then because p is monic, has degree 2 and annihilates A it follows
that p is the characteristic polynomial.

Assume then that F = R. Now if A has no eigenvalues, then p is the characteristic
polynomial by definition. Assume then that p(z) = (z − λ1)(z − λ2) which implies
that p(T ) = (T − λ1I)(T − λ2I) = 0. If neither T − λ1I or T − λ2I is injective, then
by definition p is the minimal polynomial. Assume then that T − λ2I is invertible.
Then dim null(T − λ1I) = 2, so that T − λ1I = 0. Hence we get c = b = 0 and
a = d = λ1. Hence p(z) = (z − λ1)2, so that p is the characteristic polynomial by
definition.

15. S is normal, so there’s an orthonormal basis of V such that S has a block diagonal
matrix with respect to the basis and each block is a 1 × 1 or 2 × 2 matrix and the
2×2 blocks have no eigenvalue (theorem 7.25). From S∗S = I we see that each block
Ai satisfy A∗iAi = I, so that they are isometries. Hence a 2× 2 block is of the form[

cos θ − sin θ
sin θ cos θ

]
.

We see that T 2 +αT +βI is not injective if and only if A2
i +αAi+βI is not injective

for some 2×2 matrix Ai. Hence x2 +αx+β must equal the characteristic polynomial
of some Ai, so by the previous exercise it’s of the form

(x− cos θ)(z − cos θ) + sin2 θ = x2 − 2x cos θ + cos2 θ + sin2 θ

so that β = cos2 θ + sin2 θ = 1.
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10 Trace and Determinant

1. The map T 7→ M(T, (v1, . . . , vn)) is bijective and satisfies ST 7→ M(ST, (v1, . . . , vn)) =
M(S, (v1, . . . , vn))M(T, (v1, . . . , vn)). Hence

ST = I ⇔M(ST, (v1, . . . , vn)) =M(S, (v1, . . . , vn))M(T, (v1, . . . , vn)) = I.

The claim now follows trivially.

2. Both matrices represent an operator in L(Fn). The claim now follows from exercise
3.23.

3. Choose a basis (v1, . . . , vn) and let A = (aij) be the matrix corresponding to the
basis. Then Tv1 = a11v1 + . . .+ an1vn. Now (v1, 2v2, . . . , 2vn) is also a basis and we
have by our assumption Tv = a11v1 + 2(a21v2 + . . .+ an1vn). We thus get

a21v2 + . . .+ an1vn = 2(a21v2 + . . .+ an1vn),

which implies (a21v2 + . . . + an1vn = 0. By linear independence we get a21 = . . . =
an1 = 0, so that Tv1 = a11v. The claim clearly follows.

4. Follows directly from the definition of M(T, (u1, . . . , un), (v1, . . . , vn)).

5. Let (e1, . . . , en) be the standard basis for Cn. Then we can find an operator T ∈
L(Cn) such that M(T, (e1, . . . , en)) = B. Now T has an upper-triangular matrix
corresponding to some basis (v1, . . . , vn) of V . Let A =M((v1, . . . , vn), (e1, . . . , en)).
Then

A−1BA =M(T, (v1, . . . , vn))

which is upper-triangular. Clearly A is an invertible square matrix.

6. Let T be the operator corresponding to the matrix[
0 −1
1 0

]
,

[
0 −1
1 0

]2

=
[
−1 0
0 −1

]
.

By theorem 10.11 we have trace(T 2) = −2 < 0.

7. Let (v1, . . . , vn) be a basis of eigenvectors of T and λ1, . . . , λn be the corresponding
eigenvalues. Then T has the matrix λ1 0

. . .
0 λn

 .
Clearly trace(T 2) = λ2

1 + . . .+ λ2
n ≥ 0 by theorem 10.11.
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8. Extend v/‖v‖ to an orthonormal basis (v/‖v‖, e1, . . . , en) of V and letA =M(T, (v/‖v‖, e1, . . . , en)).
Let a, a1, . . . , an denote the diagonal elements of A. Then we have

ai = 〈Tei, ei〉 = 〈〈ei, v〉w, ei〉 = 〈0, ei〉 = 0,

so that

trace(T ) = a = 〈Tv/‖v‖, v/‖v‖〉 = 〈〈v/‖v‖, v〉w, v/‖v‖〉 = 〈w, v〉 .

9. From exercise 5.21 we have V = nullP ⊕rangeP . Now let v ∈ rangeP . Then v = Pu
for some u ∈ V . Hence Pv = P 2w = Pw = v, so that P is the identity on rangeP .
Now choose a basis (v1, . . . , vm) for rangeP and extend it with a basis (u1, . . . , un)
of nullP to get a basis for V . Then clearly the matrix for P in this basis consists
of a diagonal matrix with 1s on part of the diagonal corresponding to the vectors
(v1, . . . , vm) and 0s on the rest of the diagonal. Hence traceP = dim rangeP ≥ 0.

10. Let (v1, . . . , vn) be some basis of V and let A =M(T, (v1, . . . , vn)). Let a1, . . . , an be
the diagonal elements of A. By proposition 6.47 T ∗ has the matrix A∗, so that the
diagonal elements of A∗ are a1, . . . , an. By theorem 10.11 we have

trace(T ∗) = a1 + . . .+ an = a1 + . . .+ an = trace(T ).

11. A positive operator is self-adjoint. By the spectral theorem we can find a basis
(v1, . . . , vn) of eigenvectors of T . Then A = M(T, (v1, . . . , vn)) is a diagonal matrix
and by positivity of T all the diagonal elements a1, . . . , an are positive. Hence a1 +
. . .+ an = 0 implies a1 = . . . = an = 0, so that A = 0 and hence T = 0.

12. The trace of T is the sum of the eigenvalues. Hence λ − 48 + 24 = 51 − 40 + 1, so
that λ = 36.

13. Choose a basis of (v1, . . . , vn) of V and let A =M(T, (v1, . . . , vn)). Then the matrix
of cT is cA. Let a1, . . . , an be the diagonal elements of A. Then we have

trace(cT ) = ca1 + . . .+ can = c(a1 + . . .+ an) = ctrace(T ).

14. The example in exercise 6 shows that this is false. For another example take S =
T = I.

15. Choose a basis (v1, . . . , vn) for V and let A = M(T, (v1, . . . , vn)). It’s sufficient to
prove that A = 0. Now let ai,j be the element in row i, column j of A. Let B be
the matrix with 1 in row j column i and 0 elsewhere. Then it’s easy to see that in
BA the only non-zero diagonal element is ai,j . Thus trace(BA) = ai,j . Let S be the
operator corresponding to B. It follows that ai,j = trace(ST ) = 0, so that A = 0.
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16. Let T ∗Tei = a1e1 + . . . + anen. Then we have that ai = 〈T ∗Tei, ei〉 = ‖Tei‖2 by
the ortogonality of (e1, . . . , en). Clearly ai is the ith diagonal element in the matrix
M(T ∗T, (e1, . . . , en)), so that

trace(T ∗T ) = ‖Te1‖2 + . . .+ ‖Ten‖2.

The second assertion follows immediately.

17. Choose a basis (v1, . . . , vn) such that T has an upper triangular matrix B = (bij)
with eigenvalues λ1, . . . , λn on the diagonal. Now the ith element on the diagonal of
B∗B is

∑n
j=1 bjibji =

∑n
j=1 |bji|2, where |bii|2 = |λi|2. Hence

n∑
i=1

|λi|2 ≤
n∑
i=1

n∑
j=1

|bji|2 = trace(B∗B) = trace(A∗A) =
n∑
k=1

n∑
j=1

|ajk|2.

18. Positivity and definiteness follows from exercise 16 and additivity in the first slot
from corollary 10.12. Homogeneity in the first slot is exercise 13 and by exercise 10

〈S, T 〉 = trace(ST ∗) = trace((ST ∗)∗) = trace(TS∗) = 〈T, S〉.

It follows that the formula defines an inner-product.

19. We have 0 ≤ 〈Tv, Tv〉 − 〈T ∗v, T ∗v〉 = 〈(T ∗T − TT ∗)v, v〉. Hence T ∗T − TT ∗ is a
positive operator (it’s clearly self-adjoint), but trace(T ∗T − TT ∗) = 0, so all the
eigenvalues are 0. Hence T ∗T − TT ∗ = 0 by the spectral theorem, so T is normal.

20. Let dimV = n and write A =M(T ). Then we have

det cT = det cA =
∑
σ

caσ(1),1 · · · caσ(n),n = cn detA = cn detT

21. Let S = I and T = −I. Then we have 0 = det(S + T ) 6= detS + detT = 1 + 1 = 2.

22. We can use the result of the next exercise which means that we only need to prove
this for the complex case. Let T ∈ L(Cn) be the operator corresponding to the
matrix A. Now each block Aj on the diagonal corresponds to some basis vectors
(ei, . . . , ei+k). These can be replaced with another set of vectors, (vi, . . . , vi+k), span-
ning the same subspace such that Aj in this new basis is upper-triangular. We have
T (span(vi, . . . , vi+k)) ⊂ span(vi, . . . , vi+k), so after doing this for all blocks we can
assume that A is upper-triangular. The claim follows immediately.

23. This follows trivially from the formula of trace and determinant for a matrix, because
the formulas only depends on the elements of the matrix.

34



24. Let dimV = n and let A =M(T ), so that B =M(T ) equals the conjugate transpose
of A i.e. bij = aji. Then we have

detT = detA =
∑
σ

aσ(1),1 · · · aσ(n),n

=
∑
σ

a1,σ(1) · · · an,σ(n) =
∑
σ

a1,σ(1) · · · an,σ(n)

=
∑
σ

bσ(1),1 · · · bσ(n),n = detB = detT ∗.

The first equality on the second line follows easily that every term in the upper sum
is represented by a term in the lower sum and vice versa. The second claim follows
immediately from theorem 10.31.

25. Let Ω = {(x, y, z) ∈ R3 | x2 + y2 + z2 < 1} and let T be the operator T (x, y, z) =
(ax, by, cz). It’s easy to see that T (Ω) is the ellipsoid. Now Ω is a circle with radius
1. Hence

|detT |volume(Ω) = abc× 4
3
π =

4
3
πabc,

which is the volume of an ellipsoid.
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