BTK Inhibitors for the Treatment of B-Cell Malignancies: Clinical Updates for Specialty Pharmacists

This live broadcast is a part of Asembia's 2020 Specialty Pharmacy Summit Virtual Experience and takes the place of the continuing education satellite program originally scheduled at Asembia's 2020 live event.

Faculty Information

Anthony J. Perissinotti, PharmD, BCOP

Clinical Pharmacist Specialist, Hematology Clinical Team Lead - Hematology/Oncology University of Michigan – Michigan Medicine Ann Arbor, Michigan

Kirollos S. Hanna, PharmD, BCPS, BCOP

Oncology Pharmacy Manager M Health Fairview Maple Grove Minnesota Assistant Professor of Pharmacy Mayo Clinic College of Medicine Rochester, Minnesota

Faculty and Staff Disclosures

Anthony J. Perissinotti, PharmD, BCOP, has no financial relationships with commercial interests to disclose.

Kirollos S. Hanna, PharmD, BCPS, BCOP has the following relationships with commercial interests to disclose:

- Consultant AbbVie, Seattle Genetics
- Speakers Bureau AbbVie, Seattle Genetics
- Stock/Shareholder CVS Health
- Advisory Boards AstraZeneca, Heron Therapeutics, Incyte, Rigel, Sandoz, Taiho Oncology

Pharmacy Times Continuing Education™ Planning Staff: Jim Palatine, RPh, MBA; Maryjo Dixon, RPh; Amy Seung, PharmD, BCOP, FHOPA; Brianna Schauer, MBA; Susan Pordon; and Brianna Winters have no financial relationships with commercial interests to disclose.

Anonymous peer reviewers have been used as part of content validation and conflict resolution. The peer reviewers have no relevant financial relationships with commercial interests to disclose.

The content of this activity may include information regarding the use of products that may be inconsistent with, or outside the approved labeling for, these products in the United States. Pharmacists should note that the use of these products outside current approved labeling is considered experimental and are advised to consult the prescribing information for these products

This activity is supported by an educational grant from BeiGene, Ltd.

BTK Inhibitors for the Treatment of B-Cell Malignancies: Clinical Updates for Specialty Pharmacists

Anthony J. Perissinotti, PharmD, BCOP Clinical Pharmacist Specialist, Hematology Clinical Team Lead - Hematology/Oncology University of Michigan – Michigan Medicine Ann Arbor, Michigan

Educational Objectives

At the completion of this activity, participants will be able to:

- Explain the link between the BCR pathway in the pathophysiology of Bcell malignancies and the role of BTK inhibition for treatment of B-cell malignancies
- Determine the recommended treatment for a given B-cell malignancy based on patient- and disease-specific characteristics
- Develop a counseling and monitoring plan for a patient who is newly started on therapy with a BTK inhibitor for the treatment of a B-cell malignancy

Lymphoma Non-Hodgkin Lymphoma Hodgkin Lymphoma +21,040 new (NHL) cases of CLL New cases: 8480 (10%) New cases: 77,240 (90%) **B-Cell Lymphoma T-Cell Lymphoma** Not discussing today **CLL/SLL** NHL-Follicular NOS (18.6%) DLBCL, diffuse large-B-cell lymphoma (17.1%)(10.8%)CLL, chronic lymphocytic leukemia; DLBCL SLL, small lymphocytic leukemia; MZL, marginal zone lymphoma (32.5%) MCL, mantle cell lymphoma PTCL ALCL, anaplastic large-cell Burkitt NOS PTCL-NOS, peripheral T-cell lymphoma not other-wise specified Other (1.6%) (1.7%) MZL MCL WM, Waldenström macroglobulinemia/lymphoplasmacytic. (18.9%)WM (4.1%) (8.3%) AL (1.1%)Siegel RL, et al. CA Cancer J Clin. 2020;70(1):7-30; CL Hairy Cell

(1.1%)

(4.1%)

Al-Hamadani M, et al. Am J Hematol. 2015;90(9):790-795.

B-Cell NHL

Siegel RL, et al. CA Cancer J Clin. 2020;70(1):7-30; Al-Hamadani M, et al. Am J Hematol. 2015;90(9):790-795.

Therapies in B-Cell Malignancies

National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology. B-Cell Lymphomas v1.2020.

Regimen Acronym Key

BR	Bendamustine, rituximab	CVP	Cyclophosphamide, vincristine, prednisone
FCR	Fludarabine, cyclophosphamide, rituximab	VR-CAP	Bortezomib, rituximab, cyclophosphamide, doxorubicin, prednisone
Clb + Obi	Chlorambucil, obinutuzumab	DRC	Dexamethasone, rituximab, cyclophosphamide
СНОР	Cyclophosphamide, doxorubicin, vincristine, prednisone	BDR	Bortezomib, dexamethasone, rituximab
HiDAC	High-dose cytarabine	Hyper-CVAD	Cyclophosphamide, vincristine, doxorubicin, dexamethasone alternating with HiDAC, methotrexate
Nordic Regimen	Maxi-CHOP alternating with HiDAC		

Considerations When Selecting Therapies

FDA Approval of BTK Inhibitors

BTK Inhibitors in B Cell Malignancies

Agent	FDA approval	Class	Dose	Route	Supplied
Ibrutinib	CLL (1st+), MCL (2nd+) WM (1st+), MZL (2nd+)	BTKi	MCL: 560 mg daily CLL: 420 mg daily	Oral	70-, 140-, 280-, 420-, and 560-mg tablets
Acalabrutinib	MCL (2nd+) CLL (1st+)	BTKi (2nd gen)	100 mg twice daily	Oral	100-mg capsule
Zanubrutinib	MCL (2nd+)	BTKi (2nd gen)	160 mg twice daily or 320 mg daily	Oral	80-mg capsule

Imbruvica. Prescribing information. Pharmacyclics LLC; 2020; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; 2019; Brukinsa. Prescribing information. BeiGene USA, Inc; 2019.

BTK Inhibitors Not Created Equal

IC₅₀/EC₅₀ (nM)

Kinase	Ibrutinib	Acalabrutinib	Zanubrutinib
BTK	1.5	5.1	0.5
TEC	10	126	44
ІТК	4.9	>1000	50
BMX	0.8	46	1.4
EGFR	5.3	>1000	21
ERBB4	3.4	16	6.9
JAK3	32	>1000	1377
BLK	0.1	>1000	2.5

Republished with permission of American Society of Hematology, from "Potency and selectivity of BTK inhibitors in clinical development for B-cell malignancies," Kaptein A, et al, 132(suppl 1) © 2018; permission conveyed through Copyright Clearance Center, Inc.

Irreversible vs Reversible BTK Inhibitors

Irreversible inhibitor

- Most drugs are not irreversible inhibitors due to toxicity
- Ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib
 - Irreversibly bind to some non-BTK kinases as well

Berglöf A, et al. Scand J Immunol. 2015;82(3):208-217.

Reversible inhibitor

- Being developed to be more BTK selective, have fewer off-target effects, and allow for persistent binding to mutated BTK (or different BTK binding site) to overcome resistance
- ARQ-531, LOXO-305, ICP-022, SNS-062

Time (hours)

Chronic Lymphocytic Leukemia (CLL)

- Incidence:
 - Estimated 21,040 Americans in 2020
- Deaths:
 - 4060 in 2020
- Median age: 70 years

- Most prevalent leukemia
- Prognostic factors:
 - del(17p)/TP53 mutation, unmutated IGHV, complex karyotype
- CLL and SLL (same malignancy)
 - CLL: >5000 clonal lymphocytes in blood
 - SLL: <5000 clonal lymphocytes in blood but presence of lymphadenopathy and/or splenomegaly

IGHV, immunoglobulin heavy chain variable.

Siegel RL, et al. CA Cancer J Clin. 2020;70(1):7-30; SEER cancer stat facts: leukemia - chronic lymphocytic leukemia (CLL). National Cancer Institute. Accessed May 5, 2020. seer.cancer.gov/statfacts/html/clyl.html; NCCN Clinical Practice Guidelines in Oncology. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma v4.2020.

First-Line Treatment in CLL: Pre-BTKi

Population	Old standard	New standard
Young/fit	Mutated IGVH: FCR Unmutated IGVH: FCR or BR	
Older/fit	Bendamustine + rituximab	
Elderly/comorbidities	Chlorambucil + Obi	

ECOG 1912 Trial: Ibrutinib + R vs FCR

End point	IGHV status	Ibrutinib-R	FCR	P-value
PFS	All Patients	89.4%	72.9%	
	Unmutated	90.7%	62.5%	<0.001
OS		98.8%	91.5%	

Conclusions	Ibrutinib + R improved PFS compared with FCR, especially in IGHV unmutated CLL	
Shanafelt TD, et al. <i>N Engl J Med</i> . 2019;381(5):432-443.	PFS, progression-free survival; OS, overall survival.	

First-Line Treatment in CLL: Changing Landscape

Population	Old standard	New standard
Young/fit	Mutal d IGY i: FCR Unmutate GVH: FCR /r Bi	lbrutinib + rituximab*
Older/fit	Bendamustine + rituximab	
Elderly/comorbidities	Chlorambucil + Obi	

*Mutated IGVH without del(17p)/TP53 mutation can consider FCR.

Alliance A041202 Trial

<u>Ibrutinib + rituximab</u> vs <u>ibrutinib alone</u> vs <u>bendamustine + rituximab</u>

Treatment arm	Median PFS	2-year PFS	P-value
Ibrutinib	Not reached	87%	
lbrutinib + R	Not reached	88%	<0.001
BR	43 months	74%	

Conclusions	 No improvement with adding rituximab to ibrutinib Ibrutinib ± R improved PFS vs BR
	Vast majority of patients with CLL no longer need chemotherapy

Woyach JA, et al. N Engl J Med. 2018;379(26):2517-2528.

First-Line Treatment in CLL: Changing Landscape

Population	Old standard	New standard
Young/fit	Mutal d IGY i: FCR Unmutate GVH: FCR /r B	lbrutinib + rituximab*
Older/fit	Benda ny cine + rity a pab	Ibrutinib
Elderly/comorbidities	Chlorambucil + Obi	

*Mutated IGVH without del(17p)/TP53 mutation can consider FCR; can consider no rituximab with ibrutinib based on ALLIANCE trial (but now FDA approved).

ELEVATE-TN Trial

<u>Acalabrutinib + obinutuzumab vs acalabrutinib alone vs chlorambucil + obinutuzumab</u>

Treatment arm	PFS at 30 months	<i>P</i> -value
Acalabrutinib	90%	
Acalabrutinib + obininutuzumab	82%	Not reported
Chlorambucil+ obininutuzumab	34%	Not reported

• Acalabrutinib ± Obi improved PFS vs chlorambucil + Obi

Conclusions

- No significant PFS improvement with adding Obi to acalabrutinib
- Higher ORR with adding Obi to acalabrutinib (94% vs 79%; *P* < 0.0001)

ORR, overall response rate.

Sharman JP, et al. Presented at 2019 ASH Annual Meeting, December 7-10, 2019. Abstract 31.

First-Line Treatment in CLL: Changing Landscape

Population	Old standard	New standard
Young/fit	Muta、d IG' A: FCR Unmutate GVH: FCR r B	lbrutinib + Rituximab*
Older/fit	Benda ny cine + rity a pab	Ibrutinib
Elderly/comorbidities	Chloram (cil + Obi	Acalabrutinib +/- Obi Ibrutinib Venetoclax + Obi

*Mutated IGVH without del(17p)/TP53 mutation can consider FCR; can consider no rituximab with ibrutinib based on ALLIANCE trial (but now FDA approved).

Future Directions: Phase 2 Ibrutinib With Venetoclax

MRD, minimal residual disease.

Study design

• Phase 2, single-center, open-label

Primary end point

 Complete response (CR) rate (with or without blood count recovery)

Jain N, et al. N Engl J Med. 2019;380(22):2095-2103.

Phase 2 Ibrutinib With Venetoclax: Results

Treatment arm	n	Undetectable MRD in bone marrow (%)	CR (%)	Partial response (PR) (%)
3 cycles ibrutinib	75			96
3 cycles ibrutinib + Ven	72	17	57	43
6 cycles ibrutinib + Ven	70	40	73	27
9 cycles ibrutinib + Ven	60	52	83	17
12 cycles ibrutinib + Ven	33	61	88	12
18 cycles ibrutinib + Ven	26	69	96	4

Conclusions

- Ibrutinib + Ven leads to high CR rates and high MRD negativity
- PFS at 1 year was 98% and OS at 1 year was 99%
- Multicenter phase 3 trial eagerly awaited

Jain N, et al. N Engl J Med. 2019;380(22):2095-2103.

Future Directions: SEQUOIA Trial

Tam CS, et al. Presented at 2019 ASH Annual Meeting, December 7-10, 2019. Abstract 499.

SEQUOIA Trial: Arm C Results

	Treatment-naïve del(17p) CLL/SLL (N = 90)	
Median follow-up, mo (range)	7 (2.9-14.5)	
Efficacy (best response)		
Overall response rate	92.2%	
CR	0%	
PR	75.6%	
PR with lymphocytosis	16.7%	
Stable disease	6.7%	
Progressive disease	1.1%	

Tam CS, et al. Presented at 2019 ASH Annual Meeting, December 7-10, 2019. Abstract 499.

CLL Treatment 2020: First-Line Therapy

* Select regimens are included. More therapies are included in the guidelines and may be selected based on patient- and disease-specific factors.

CLL Treatment 2020: Relapsed/Refractory

*NCCN Clinical Practice Guidelines in Oncology. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma v4.2020.

* Select regimens are included. More therapies are included in the guidelines and may be selected based on patient- and disease-specific factors.

Mantle Cell Lymphoma (MCL)

- Incidence: 6% of NHL
- Deaths:
 - Low risk: 5-year OS 60%
 - Intermediate risk: median 51-month OS
 - High risk: median 29-month OS
- Median age: 63 years

- Hallmark:
 - t(11;14)
- Prognostic factors:
 - p53 mutations, ATM, CCND2 or 3, SOX11, IGHV
- Cytologic variants
 - Classic, small-cell, blastoid, pleomorphic

NCCN Clinical Practice Guidelines in Oncology. B-Cell Lymphomas v1.2020; Armitage JO, Weisenburger DD. J Clin Oncol. 1998;16(8):2780-2795; Hoster E, et al. Blood. 2008;111(2):558-565; SEER Cancer Stat Facts: non-Hodgkin lymphoma. National Cancer Institute. Accessed May 5, 2020. seer.cancer.gov/statfacts/html/nhl.htm; Eskelund CW, et al. Blood. 2017;130(17):1903-1910; Jain P, Wang M. Am J Hematol. 2019;94(6):710-725; Tiemann M, et al. Br J Haematol. 2005;131(1):29-38; Herrmann A, et al. J Clin Oncol. 2009;27(4):511-518.

MCL Treatment 2020

Ibrutinib Pooled Analysis: R/R MCL

ACE-LY-004 Trial: Acalabrutinib for R/R MCL Results

Wang M, et al. *Lancet*. 2018;391(10121):659-667; Wang M, et al. *Leukemia*. 2019;33(11):2762-2766.

BCG-3111-206 Trial: Zanubrutinib for R/R MCL Results

Song Y, et al. Hematol Oncol. 2019;37:45-46.

Future Directions: AIM Trial Ibrutinib + Venetoclax for R/R MCL

• CR at week 16

• Phase 2, multicenter, open-label

Population

• No notable

Study design

Tam CS, et al. N Engl J Med. 2018;378(13):1211-1223.
AIM Trial: Ibrutinib + Venetoclax for R/R MCL Results

Tam CS, et al. N Engl J Med. 2018;378(13):1211-1223; Handunnetti SM, et al. Blood. 2019;134(suppl 1):756.

Waldenström Macroglobulinemia (WM)

- Incidence:
 - <1% of NHL; 100-1500 new cases/year
- Deaths:
 - 60% OS at 5-years
- Median age: 63 years

- Hallmark:
 - MYD88^{L265P} (>90%), high IgM
- Prognostic factors:
 - MYD88^{WT} and CXCR4 mutations
- Presentation
 - Hyperviscosity, neuropathy, adenopathy or organomegaly, amyloidosis, cryoglobulinemia, cold agglutin disease, and cytopenias

NCCN Clinical Practice Guidelines in Oncology. Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma v1.2020; Key statistics about Waldenstrom macroglobulinemia. American Cancer Society. Published July 19, 2018. Accessed May 5, 2020. cancer.org/cancer/waldenstrom-macroglobulinemia/about/key-statistics.html; Castillo JJ, Treon SP. *Leukemia*. 2019;33(11):2555-2562.

Revisited: Pathophysiology and Mechanism of Action in WM

iNNOVATE Trial Ibrutinib + Rituximab vs <u>Rituximab</u>

End point	lbrutinib-R (n = 75), %	Rituximab (n = 75), %	
ORR	92	47	p<0.00
CR	3	1	
Very good PR	23	4	– p<0.00
PR	47	27	
Minor response	20	15	
Median serum IgM level	Decreased by 56%	Increased by 6%	

Dimopoulos MA, et al. N Engl J Med. 2018;378(25):2399-2410.

iNNOVATE Trial Ibrutinib + Rituximab vs <u>Rituximab</u>

Led to FDA approval in WM

Conclusions

Ibrutinib + rituximab improves PFS over rituximab alone

- Median PFS: NR vs 20.3 months; HR
 0.2 (95% Cl, 0.11-0.38); P < 0.001
- 30-month PFS: 82% vs 28%
- 30-month OS: 94% vs 92%

Patients with mutations in CXCR4 or MYD88^{WT} have lower and slower responses

ACE-WM-001 Trial: Acalabrutinib for WM Results

End point	Treatment naïve (n = 14), %	R/R (n = 92), %	End point	MYD88 ^{L265P} (n = 36)	МҮD88 ^{wт} (n = 14)
ORR	93	93	ORR	94	79
Very good PR		9	Very good PR	11	
PR	79	72	PR	69	64
Minor response	14	13	Minor response	14	14

Owen RG, et al. Lancet Haematol. 2020;7(2):e112-e121.

Future Directions: ASPEN Trial Zanubrutinib vs Ibrutinib

A Study Comparing BGB-3111 and Ibrutinib in Participants With Waldenström's Macroglobulinemia (WM) (ASPEN). ClinicalTrials.gov identifier: NCT03053440. Updated April 24, 2020. Accessed May 5, 2020. clinicaltrials.gov/ct2/show/NCT03053440?term=NCT03053440&draw=2&rank=1; BeiGene. News release. Published December 16, 2019. Accessed May 5, 2020. globenewswire.com/news-release/2019/12/16/1960839/0/en/BeiGene-Announces-Results-of-Phase-3-ASPEN-Trial-of- Zanubrutinib-Compared-to-Ibrutinib-for-the-Treatment-of-Patients-with-Waldenstr%C3%B6m-s-Macroglobulinemia.html

WM Treatment 2020 (First-Line Therapy)

Lymphoma v1.2020; Vaxman I, Gertz M. Leuk Lymphoma. 2020;1-13.

WM Treatment 2020 (R/R Therapy)

NCCN Clinical Practice Guidelines in Oncology. Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma v1.2020; Vaxman I, Gertz M. Leuk Lymphoma. 2020;1-13.

*If not previously received.

BTK Inhibitor Resistance

- Resistance in CLL more well described than MCL and WM
- 2 primary mediators of resistance
 - BTK point mutation (ie, BTK^{C481S}; others: C481R, C481F, and C481Y)
 - Changes irreversible BTK inhibitor to reversible inhibitor with decreased BTK binding affinity
 - *PLCG2* mutation (ie, R665W, S707Y, L845F)

Woyach JA, et al. N Engl J Med. 2014;370(24):2286-2294; Woyach JA, et al. J Clin Oncol. 2017;35(13):1437-1443; Ahn IE, et al. Blood. 2017;129(11):1469-1479; Woyach JA, et al. Blood. 2019;134(suppl 1):504; Furman RR, et al. N Engl J Med. 2014;370(24):2352-2354; Jain P, et al. Br J Haematol. 2018;183(4):578-587; Jiménez C, et al. Br J Haematol. Published online February 27, 2020. doi: 10.111/bjh.16463

Novel Approaches to BTK Inhibitor Resistance/Progression

Approach	Agent
Reversible BTK inhibitors	ARQ-531, Loxo-305, ICP-022 (Orelabrutinib), SNS-062 (Vecabrutinib)
Different target	Venetoclax, CAR-T, idelalisib, duvelisib
Chemotherapy	Depends on clinical scenario and disease (ie, R-BAC for MCL)

Reiff SD, et al. *Blood.* 2016;128(22):Abstract 3232; Binnerts ME, et al. 2015 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics. Abstract C186; Brandhuber B, et al. SOHO 2018. Abstract CLL-200; McCulloch R, et al. *Br J Haematol*. Published online February 3, 2020. doi: 10.1111/bjh.16416; Wang M, et al. *N Engl J Med.* 2020;382(14):1331-1342.

BTK Inhibitors for the Treatment of B-Cell Malignancies: Clinical Updates for Specialty Pharmacists

Kirollos S. Hanna, PharmD, BCPS, BCOP

Oncology Pharmacy Manager M Health Fairview Maple Grove Minnesota Assistant Professor of Pharmacy

Mayo Clinic College of Medicine

Rochester, Minnesota

Patient Case

AJ is a 64-year-old man with relapsed MCL who is initiating therapy with zanubrutinib.

- On what adverse effects would you counsel the patient?
- What supportive care recommendations would you make?
- How do we best coordinate efforts between the stakeholders in this patient's care including the primary oncology team and specialty pharmacy?

Patient Counseling and Monitoring Plans

BTK Inhibitors for the Treatment of B-Cell Malignancies: Clinical Updates for Specialty Pharmacists

Rule S, et al. *Haematologica*. 2019;104(5):e211-e214; Tam CS, et al. *Hematol Oncol*; 2019;37:245-247; Wang M, et al. *Lancet*. 2018;391(10121):659-667; Imbruvica. Prescribing information. Pharmacyclics LLC; 2020. Brukinsa. Prescribing information. BeiGene USA, Inc; 2019; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; 2019.

Multidisciplinary Collaboration

• Pharmacy-led oral chemotherapy management programs improved

- Patient knowledge, adherence rates that exceeded nationally established thresholds, superior response outcomes in CML
- Adherence to national oral chemotherapy prescribing standards
- Time to medication access
- Identification of clinically significant issues (most common: adverse drug reactions, 40%; modification of laboratory monitoring, 25%)
- Provider and patient satisfaction

Multidisciplinary collaboration	Drug interactions and administration considerations	Supportive care recommendations	AE management	Patient activation and communication	Financial barriers and medication access

CML, chronic myelogenous leukemia.

Hansen EA, et al. J Pharm Pract. 2016;29(3):206-211; Holle LM, et al. J Oncol Pharm Pract. 2016;22(3):511-516; Lam MS, et al. J Oncol Pharm Pract. 2016;22(6):741-748; Muluneh B, et al. J Oncol Pract. 2018;14(6):e324-e334; Perez A, et al. J Hematol Oncol Pharm. 2015;5:99-108; Mancini R, et al. J Clin Oncol. 2012;30(suppl):Abstract 44; Koselke E, et al. J Hematol Oncol Pharm. 2015;5:62-68; Mackler E, et al. J Oncol Pract. 2019;15(4):e346-e355.

Characteristics of BTK Therapies

Agent	Metabolism and transport	Concurrent CYP3A4 inhibitor	Concurrent CYP3A4 inducer	Concurrent acid suppression
Ibrutinib	Substrate: CYP2D6 (minor), CYP3A4 (major)	Moderate: Reduce to 280 mg PO daily Strong (posaconazole): Reduce to 70 mg PO daily Strong (other): Avoid	Strong: Avoid	N/A
Acalabrutinib	Substrate: CYP3A4 (major), P-gp, BCRP/ABCG2	Strong: Avoid Moderate: Reduce to 100 mg PO daily	Strong: Increase to 200 mg PO bid	Separate antacids by 2 hours; take acalabrutinib 2 hours prior to H2RAs; avoid PPIs
Zanubrutinib	Substrate: CYP3A4 (major)	Strong: Reduce to 80 mg PO daily Moderate: Reduce to 80 mg PO twice daily	Moderate or Strong: avoid	N/A

BCRP, breast cancer resistance protein; H2RA, H2 receptor antagonist; PPI, proton pump inhibitor.

Imbruvica. Prescribing information. Pharmacyclics LLC; 2020. Brukinsa. Prescribing information. BeiGene USA, Inc; 2019; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; 2019.

Administration of Oral BTK Therapies

Agent	Pill burden	Frequency	Effect of food	Missed dose recommendations
Ibrutinib	1 tablet	Daily	Administer with OR without food	Same day ASAP
Acalabrutinib	1 capsule (100 mg)	BID	Administer with OR without food; high-fat, high-calorie meal decreases C _{max} by 73% and T _{max} delayed 1 or 2 hours	Within 3 hours otherwise skip
Zanubrutinib	2-4 capsules (80 mg)	Daily or BID	Administer with OR without food	Same day ASAP

Imbruvica. Prescribing information. Pharmacyclics LLC; 2020. Brukinsa. Prescribing information. BeiGene USA, Inc; 2019; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; 2019.

Infection Prophylaxis: No Standard for BTK Inhibitor

CLL agent	Pneumocystis jirovecii pneumonia (PJP)	Herpes simplex virus (HSV)	Cytomegalovirus (CMV)	Hepatitis B (HepB)	Consider prophylaxis
Agent for prophylaxis or monitoring	Sulfamethoxazole/ trimethoprim or equivalent	Acyclovir or equivalent	CMV PCR Q2-3W	High-risk: prophylaxis and monitoring	with BTK inhibitor for
Acalabrutinib					"high-risk"
Ibrutinib					patients
Zanubrutinib					
Duvelisib	Х		Х		
Idelalisib	Х		Х		HenB
Purine analog	Х	Х	Х		
Venetoclax					DID
Bendamustine	X	X	X		
Alemtuzumab	Х	Х	Х		
Anti-CD20				Х	CIVIV

EBV, Epstein-Barr virus; PNA, pneumonia.

NCCN Clinical Practice Guidelines in Oncology. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma v4.2020; Imbruvica. Prescribing information. Pharmacyclics LLC; 2020; Brukinsa. Prescribing information. BeiGene USA, Inc; 2019; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; 2019; Copiktra. Prescribing information. Verastem Oncology; 2019; Zydelig. Prescribing information. Gilead Sciences Inc; 2018; Venclexta. Prescribing information. AbbVie Inc; 2019.

Adverse Effect Management

BTK Inhibitors for the Treatment of B-Cell Malignancies: Clinical Updates for Specialty Pharmacists

Off-Target Effects

TEC	Platelet effects, T-cell priming	
EGFR	Rash, cardiac toxicity, diarrhea	
SRC	Platelet effects)
BMX	Cardiac toxicity	
ІТК	Antibody-dependent cellular cytotoxicity, migration of PMN)
	PMN, polymorphonuclear leukocyte.)
JAK3		J
ERBB4	Cardiac toxicity)

Berglöf A, et al. *Scand J Immunol*. 2015;82(3):208; Shatzel JJ, et al. *J Thromb Haemost*. 2017;15(5):835-847; Bye AP, et al. *Blood Adv*. 2017;1(26):2610-2623; Ghez D, et al. *Blood*. 2018;131(17):1955-1959; Woyach JA. *Blood*. 2018;132(18):1869-1870; Rogers K. *Blood*. 2018;131(17):1882-1884; Ruchlemer R, et al. *Mycoses*. 2019;62(12):1140-1147; Rogers KA, et al. *Leukemia*. 2019;33(10):2527-2530; Bose P, et al. *Expert Opin Drug Metab Toxicol*. 2016;12(11):1381-1392.

Ibrutinib Safety in the "Real World"

• Multicenter, retrospective analysis of patients with CLL treated in clinics and clinical trials (N = 616)

Discontinuation rate: 42% after median follow-up of 17 months

Reasons for discontinuation (%)			
Front line	Relapsed		
Arthralgias (42)	Atrial fibrillation (12.3)		
Atrial fibrillation (25)	Infection (11)		
Rash (16)	Pneumonitis (10)		
	Bleeding (9)		
	Diarrhea (7)		

• Of note, BTK C481S mutations render patients refractory to BTK therapies

Mato AR, et al. Haematologica. 2018;103(5):874-879; Dickerson T, et al. Blood. 2019;134(22):1919-1928.

Retrospective review from Ohio State

- 78.3% new or worsened hypertension (HTN) over a median of 30 months
- New HTN in 71.6% of ibrutinib users; 17.7% developed high-grade HTN (BP >160/100 mm Hg)
- 50% cumulative incidence of 4.2 months
- New or worsened HTN was associated with increased major adverse cardiovascular effects (HR, 2.17; 95% CI, 1.08-4.38)
- No single antihypertensive class was associated with prevention or control of ibrutinib-related HTN

Safety of Acalabrutinib from ASCEND

Advorce reaction	Acalabrutuinib (n = 154)		Idelalisib + R (n = 118)		BR (n = 35)	
Adverse reaction	All grades (%)	Grade ≥3 (%)	All grades (%)	Grade ≥3 (%)	All grades (%)	Grade ≥3 (%)
Infections	56	15	65	28	49	11
Neutropenia	48	23	79	53	80	40
Anemia	47	15	45	8	57	17
Thrombocytopenia	33	6	41	13	54	6
Lymphocytosis	26	19	23	18	2.9	2.9
Headache	22	0.6	6	0	0	0
Diarrhea	18	1.3	49	25	14	0
Hemorrhage	16	1.3	5	1.7	6	2.9
Fatigue	15	1.9	13	0.8	31	6
Musculoskeletal pain	15	1.3	15	1.7	2.9	0

Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; 2019.

Safety of Zanubrutinib from BGB-3111 Trials

	Zanubrutinib (n = 118)		
Adverse reaction	All grades (%)	Grade ≥3 (%)	
Neutropenia	38	15	
Thrombocytopenia	27	5	
WBC decrease	25	5	
Anemia	14	8	
URTI	39	0	
Pneumonia	15	10	
Urinary tract infection	11	0.8	
Rash 🗪	36	0	
Diarrhea 🗾	23	0.8	
Hypertension	12	3.4	
Hemorrhage	11	3.4	

Brukinsa. Prescribing information. BeiGene USA, Inc; 2019.

URTI, upper respiratory tract infection.

Management of Ibrutinib AEs and Pearls

Ibrutinib

- Muscle cramps: magnesium and calcium tablets
- Hypertension: standard management, discontinue if 2-3 meds required
 - Median time to onset, 5.9 months (range, 0.03–24 months)
- Arthralgias/myalgias
 - Acetaminophen, prednisone, quinine/tonic water, discontinue
- Leg lymphedema: discontinue
- Fatigue: reduce dose/discontinue

- For patients who experience grade 3/4 nonhematologic AEs, ibrutinib should be held until resolution to baseline or grade 1
- Once resolved, restart at:
 - 1st occurrence: starting dose of 420 mg PO daily for CLL or WM; 560 mg PO daily for MCL or MZL
 - 2nd/3rd recurrence: decrease dose by 140 mg per recurrence
 - 4th recurrence: **discontinue**
- Mid-cycle trade-in program available

Weerdt I, et al. Haematologica. 2017;102(10):1629-1639; Imbruvica. Prescribing information. Pharmacyclics LLC; 2020.

Management of Acalabrutinib AEs and Pearls

Acalabrutinib

- Headaches
 - Acetaminophen, caffeine, hydration
- Arm skin thickening/lymphedema
 - Discontinue
- HTN
 - Standard management: discontinue if 2-3 meds required

- For patients who experience grade 3/4 nonhematologic AEs, acalabrutinib should be held until resolution to baseline or grade 1
- Once resolved, restart at:
 - 1st or 2nd recurrence: restart at starting dose (100 mg twice daily)
 - 3rd recurrence: restart at 100 mg once daily
 - **4th recurrence:** acalabrutinib should be discontinued
- Mid-cycle trade-in program available

Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; 2019.

Management of Zanubrutinib AEs

Zanubrutinib

- Rash: topical emollients or corticosteroids
- Diarrhea: if no evidence of infection, antidiarrheals as needed
- Infection: monitor and treat as needed
- Hypertension: standard management, discontinue if 2-3 meds required

- For grade 3/4 nonhematologic AEs, zanubrutinib should be held until resolution to baseline or grade 1
- Once resolved, restart at:
 - 1st occurrence: 320 mg PO once daily (or 160 mg PO BID)
 - 2nd recurrence: 160 mg PO once daily (or 80 mg PO BID)
 - 3rd recurrence: **80 mg PO once daily**
 - 4th recurrence: discontinue
- Mid-cycle trade-in program available

Brukinsa. Prescribing information. BeiGene USA, Inc; 2019.

Other AEs of Interest: Atrial Fibrillation

All Grades: <u>Ibrutinib (8.4%) > Acalabrutinib (4.1%) > Zanubrutinib (2%)</u>

Prevention

• Monitor for signs and symptoms: palpitations, lightheadedness, dizziness, fainting, shortness of breath, chest discomfort

Management

- If CHA₂DS₂-VASc score ≥2, guidelines recommend anticoagulation
- Consider non-warfarin anticoagulation
 - In combination with ibrutinib, prefer rivaroxaban or apixaban
- Monitor carefully; if uncontrolled, consider switching to alternative therapy

Weerdt I, et al. *Haematologica*. 2017;102(10):1629-1639; Imbruvica. Prescribing information. Pharmacyclics LLC; 2020; Chai LK, et al. *Leuk Lymphoma*. 2017;58(12):2811-2814; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; 2019; Jones JA, et al. *Br J Haematol*. 2017;178(2):286-291; Brukinsa. Prescribing information. BeiGene USA, Inc; 2019.

Other AEs of Interest: Bleeding

Major Bleeding: Ibrutinib (4%) > Acalabrutinib (3%) > Zanubrutinib (2%)

Prevention

- Impact of platelet aggregation is reversible within 1 week of discontinuation
- Clinical trials excluded patients receiving warfarin
- Consider risks and benefits with antiplatelet and anticoagulation therapy
- Monitor for signs of bleeding
- Surgery: Evaluate risk and benefit
 - All BTK inhibitors
 - Hold for 3 days pre and 3 days post surgery; consider the benefit-risk for 3-7 days pre and post surgery
 - Minor surgery: hold for 3 days pre and 3 days post surgery
 - Major surgery: hold for 7 days pre and 7 days post surgery

Weerdt I, et al. *Haematologica*. 2017;102(10):1629-1639; Imbruvica. Prescribing information. Pharmacyclics LLC; 2020; Chai LK, et al. *Leuk Lymphoma*. 2017;58(12):2811-2814; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; 2019; Jones JA, et al. *Br J Haematol*. 2017;178(2):286-291; Brukinsa. Prescribing information. BeiGene USA, Inc; 2019.

Treatment-Related Lymphocytosis

Lymphocytosis does <u>NOT</u> indicate progressive disease.

- Lymphocytosis occurs with many therapies used to treat B-cell malignancies
- BTK inhibitors lead to transient lymphocytosis due to redistribution or release of cells from lymph nodes to peripheral blood
- Often resolves within 8 months from <u>treatment initiation</u> (prolonged durations have been reported)

Chanan-Khan A, et al. *Cancer*. 2011;117(10):2127-2135; Woyach JA, et al. *Blood*. 2014;123(12):1810-1817; Brown JR, et al. *Blood*. 2014;123(22):3390-3397; NCCN Clinical Practice Guidelines in Oncology. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma v4.2020.

Patient Activation and Communication

BTK Inhibitors for the Treatment of B-Cell Malignancies: Clinical Updates for Specialty Pharmacists

Oral Chemotherapy Logistics

- Inappropriate dosing
- Baseline labs and monitoring
- Need for education
- Insurance and procurement

<u>Pharmacists</u> provide <u>clinical considerations</u> and <u>operational best practices</u> to optimize oral chemotherapy dispensing and management.

Timmers L, et al. BMC Cancer. 2017;17(1):122; Mulkerin DL, et al. J Oncol Pract. 2016;12(10):e912-e923; Battis B, et al. J Oncol Pharm Pract. 2017;23(8):582-590.

Barriers: Medication Persistence

The first year is critical.

Mato AR, et al. Cancer Biol Ther. 2018;19(7):636-643.

Impact of Adherence on Efficacy

Study design	Retrospective sub-analysis from RESONATE trial evaluating effect of ibrutinib dose adherence on patient outcomes
Methods	 Treatment adherence measured by overall dose intensity (DI_{overall}) and 8-week DI (DI_{8-week}) DI defined as proportion of administered vs planned doses Patients with DI below mean considered "low DI"
Results	 Fewer PFS events in patients with high DI_{overall} vs low DI_{overall} (12% vs 33%) Patients who missed ≥8 consecutive days experienced more PFS events (30% vs 12%) with decrease in PFS (10.9 months vs NR, P = 0.0151) than those who missed <8 days

Barr PM, et al. Blood. 2017;129(19):2612-2615.

Role of the Pharmacy Team

Clinical Services

- Adherence
- Education/counseling
 - Disease state
 - Medication
 - Storage, handling, administration, and disposal
 - When and whom to contact with questions/concerns
- Comprehensive medication review (ie, drug-drug interactions, concurrent CLL therapies)
- Monitoring
 - Efficacy
 - Safety: toxicity management

Patient **engagement** through shared decision making

Treatment decisions are made based on patients' preferences, medical evidence, clinical judgment Patient activation

Improved health outcomes (adherence, patient satisfaction, lower cost of care)

Operational Services

- Benefits investigation
- Patient assistance programs
- Dispensing and shipping
- Refills and renewals

Hibbard JH, et al. *Health Aff (Millwood)*. 2013;32(2):207-214; Hibbard JH, et al. *Health Aff (Millwood)*. 2013;32(2):216-222; Carman KL, et al. *Health Aff (Millwood)*. 2013;32(2):223-231.

Financial Burden

Acalabrutinib: drug information. Lexicomp database. Accessed February 24, 2020; Zanubrutinib: drug information. Lexicomp database. Accessed February 24, 2020; Doshi JA, et al. *J Clin Oncol*. 2018;36(5):476-482; Doshi JA, et al. *J Clin Oncol*. 2018;36(5):476-482; Niccolai JL, et al. *J Oncol Pract*. 2017;13(1):e29-e36; Tran G, et al. *Ann Transl Med*. 2018;6(9):166.
Economics of Novel Agents in CLL

Trend in disease and cost burden of CLL for the chemoimmunotherapy and the oral targeted therapy scenarios.

Prevalence 2011-2025: Increasing by 55% (128K-199K)

- Annual cost of CLL management: Increasing by 590% (\$0.74B-\$5.13B)
- Per-patient lifetime cost of therapy: Increasing by 310% (\$147K-\$604K)
 - Medicare total outof-pocket cost: Increasing by 520% (\$9.2K-\$57K)

Chen Q, et al. J Clin Oncol. 25(2), 2016:166-174. Reprinted with permission © 2017 American Society of Clinical Oncology. All rights reserved.

Patient Case Discussion

AJ is a 64-year-old man with relapsed MCL who is initiating therapy with zanubrutinib.

- On what adverse effects would you counsel the patient?
- What supportive care recommendations would you make?
- How often should be this patient be monitored?

Patient Case Discussion

AJ is a 64-year-old man with relapsed MCL who is initiating therapy with zanubrutinib.

- How do we best coordinate efforts between the stakeholders in this patient's care including the primary oncology team and specialty pharmacy?
 - Who will provide education?
 - Who will review financial assistance and access?
 - Who will provide monitoring?
 - Who is responsible for follow-up and continual assessment?

Conclusion

- B-cell malignancies are hematologic malignancies that differ greatly based on the stage of maturation of the cancerous cell and include CLL/SLL, NHLs, and WM
 - Patients with CLL/SLL may never require treatment and others require aggressive therapy up front
 - MCL and MZL often require treatment at diagnosis with intensive therapies ± stem cell transplant
 - WM, a rare subtype, is often treated when patients become symptomatic
- BTK inhibitors have demonstrated strong efficacy and a well-tolerated safety profile in the management of B-cell malignancies
 - Treatment with ibrutinib, acalabrutinib, and zanubrutinib should be tailored to the specific malignancy, patient comorbidities, and ability to adhere to oral therapy
 - In select scenarios, BTK inhibitors may be combined with other agents such as anti-CD20 monoclonal antibodies
- Pharmacists play an integral role in the management of patients with B-cell malignancies through education, AE management, drug–drug interactions, adherence and compliance, and financial procurement

Additional Resources

- Armitage JO, Gascoyne RD, Lunning MA, et al. Non-Hodgkin lymphoma. Lancet. 2017;390(10091):298-310.
- Vose JM. Mantle cell lymphoma: 2017 update on diagnosis, risk-stratification, and clinical management. *Am J Hematol*. 2017;92(8):806-813.
- Khan N, Moskowitz AJ. Where do the new drugs fit in for relapsed/refractory Hodgkin lymphoma? *Curr Hematol Malig Rep*. 2017;12(3):227-233.
- Dimopoulos MA, Kastritis E. How I treat Waldenström macroglobulinemia. *Blood*. 2019;134(23):2022-2035.
- Lee SQ, Raamkumar AS, Li J, et al. Reasons for primary medication nonadherence: a systematic review and metric analysis. *J Manag Care Spec Pharm*. 2018;24(8):778-794.
- Kavookjian J, Wittayanukorn S. Interventions for adherence with oral chemotherapy in hematological malignancies: a systematic review. *Res Social Admin Pharm*. 2015;11(3):303-314.
- Oral chemotherapy education sheets. Available at: oralchemoedsheets.com

Jim Palatine, RPh, MBA

President Pharmacy Times Continuing Education™

